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As part of the explanation in the text of A Student’s Guide to Laplace
Transforms of why taking the derivative with respect to time of f(t)

prior to taking the Laplace transform has the effect of multiplying F (s)

by s, the fact that taking the time derivative brings down a factor of iω
from eiωt and a factor of σ from eσt. The text also mentions that taking
the time derivative of a function at any time is equivalent to finding the
slope in the graph of the function at that time. The purpose of this short
supplemental document is to illustrate the process of finding the slope
for sinusoidal and real exponential functions.

You can see how that’s done for sinusoidal functions in Fig. 0.1. Recall
that the slope of a function is taken to be the “rise” (vertical change
in the function’s value at two points) divided by the “run” (horizontal
distance between those two points) in the graph of the function vs. time.
The run, called ∆t in this figure, is assumed to be small in order to
minimize the effect of curvature (changing slope) between the two points.

In the (a) portion of Fig. 0.1, the sinusoidal function is taken as
sin (ωt), the imaginary part of the complex exponential eiωt. The value
of the slope at any point in time can be found by writing the time differ-
ence between the two points as ∆t and using the relation sin (x+ y) =

sinx cos y + cosx sin y:

df

dt
= lim

∆t→0

sin [ω(t+∆t)]− sin (ωt)

∆t

= lim
∆t→0

sin (ωt) cos (ω∆t) + cos (ωt) sin (ω∆t)− sin (ωt)

∆t

≈ sin (ωt)(1) + cos (ωt)(ω∆t)− sin (ωt)

∆t
≈ cos (ωt)(ω∆t)

∆t

≈ ω cos (ωt)
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Figure 1.1 Slopes of sinusoidal functions.

in which the small-angle relations sinx ≈ x and cosx ≈ 1 for small
values of x can be used since ∆t is small.

The steepest slope for this sinusoidal function occurs when cos (ωt) =

1 (such as at time t = 0). That maximum slope has value ω, which is
reasonable since higher frequency means shorter period between peaks
and valleys, and that requires steeper slopes.

In the (b) portion of Fig. 0.1, the sinusoidal function is taken as
cos (ωt), the real part of the complex exponential eiωt. In this case,
the value of the slope at any point in time can be found by writing
the time difference between the two points as ∆t and using the relation
cos (x+ y) = cosx cos y − sinx sin y:

df

dt
= lim

∆t→0

cos [ω(t+∆t)]− cos (ωt)

∆t

= lim
∆t→0

cos (ωt) cos (ω∆t)− sin (ωt) sin (ω∆t)− cos (ωt)

∆t

≈ cos (ωt)(1)− sin (ωt)(ω∆t)− cos (ωt)

∆t
≈ − sin (ωt)(ω∆t)

∆t

≈ −ω sin (ωt)
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in which the small-angle relations sinx ≈ x and cosx ≈ 1 for small
values of x can be used since ∆t is small.

This explains why the change over time of a complex exponential basis
function eiωt looks like this:

deiωt

dt
=

d

dt
[cos (ωt) + i sin (ωt)]

= −(ω) sin (ωt) + iω cos (ωt) = iωeiωt.

So the process of taking the time derivative of the complex exponential
function eiωt brings a factor of iω down from the exponent, and that
factor is multiplied by the function itself. Hence the change in a complex-
exponential basis function over time is just iω times that same basis
function.

This makes sense, because multiplying eiωt = cos (ωt) + i sin (ωt) by
the factor of i converts the imaginary part of the function from sin (ωt)

to cos (ωt) and the real part from cos (ωt) to − sin (ωt). That’s exactly
what’s needed to convert the shape of eiωt into the shape of the slope of
eiωt, and multiplying by the factor of ω scales the amplitude to match
the value of the slope at each point in time.
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Figure 1.2 Slope of exponential function.

To appreciate the significance of this result, it helps to also consider
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the change over time of the real exponential function eσt. As illustrated
in Fig. 0.2, that slope can be found as

deσt

dt
= lim

∆t→0

eσ(t+∆t) − eσt

∆t

= lim
∆t→0

eσteσ∆t − eσt

∆t
≈ eσt(1 + σ∆t)− eσt

∆t

≈ eσt(σ∆t)

∆t
≈ σeσt

in which the relation ex ≈ 1 + x for small values of x has been used.
Thus the time derivative of the real exponential function eσt brings

a factor of σ down from the exponent, and that factor is multiplied by
the function itself (eσt in this case). Just as the change in a sinusoidal
basis function over time is iω times that basis function, the change in
the real exponential function eσt over time is simply σ times that same
real exponential function.

This is the reasoning behind the explanation in the text that in de-
termining the change over time of the basis functions eiωt and the real
exponential function eσt that are used to synthesize the time-domain
function f(t), you find that the same basis functions are still present,
scaled by iω, and the same real exponential is still present, scaled by σ.


