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This supplemental document is intended to help readers of A Student’s

Guide to Laplace Transforms seeking a review of partial fractions and

their use in finding the inverse Laplace transform of an s-domain function

F (s). As mentioned in the text, one of the most common approaches for

determining the inverse Laplace transform is to find the function F (s)

in a table of Laplace transforms and then simply to look at the corre-

sponding time-domain function f(t). But to prevent those tables from

containing hundreds of entries, only reasonably simple forms of F (s) are

typically shown, so it’s definitely worth your while to develop an under-

standing of methods to convert various forms of F (s) into combinations

of the simple forms available in tables. One of those methods is the use

of partial fractions.

Partial fractions are useful when you’re dealing with Laplace trans-

forms because most s-domain functions F (s) are rational functions –

that is, F (s) can be expressed as the ratio of polynomials in s. So you

can write

F (s) =
Num(s)

Denom(s)
,

and if the denominator polynomial Denom(s) contains a product of two

or more polynomials, or a polynomial raised to a power, or a quadratic

or higher-order polynomial that can’t be reduced to lower-order polyno-

mials with real roots, then partial fractions can help.

Happily, most s-domain functions F (s) are not only rational but also

proper functions, which means that the order of the denominator poly-

nomial (that is, the highest power of s in the denominator) is higher

than the order of the numerator polynomial. If that’s not that case, and

the order of Denom(s) is lower than the order of Num(s), then you
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can use polynomial long division (or synthetic division) to convert the

improper rational function into the combination of a polynomial and a

proper rational function.

For example, given the improper rational function

F (x) =
Num(x)

Denom(x)
=

2x2 − 3x+ 1

x− 2

polynomial long division can be used to convert F (x) to

2x+ 1

x− 2
)

2x2 − 3x+ 1

− 2x2 + 4x

x+ 1

− x+ 2

3

→ F (x) = (2x+ 1) +
(

3
x−2

)
.

This is worth knowing, but as you’re aware if you’ve worked through

the examples of Laplace transforms in Chapter 2 of the text, this step

is not necessary for most s-domain functions F (s) that are the Laplace

transforms of time-domain functions f(t). That’s because the Laplace

transform F (s) approaches zero as s approaches infinity, which happens

when the power of s in the denominator is larger than the power of s in

the numerator. Hence F (s) is a proper rational function in most cases

of interest.

One important aspect of using partial fractions to decompose F (s)

into a combination of simpler terms is the process of factoring the de-

nominator polynomial. To determine the factors inDenom(s), remember

that the factor theorem says that the expression s − p1 is a factor of a

given polynomial if and only if p1 is a zero of that polynomial – that is, if

plugging s = p1 into the polynomial yields a value of zero. Another way

of expressing that concept is to say that p1 must be a root of the poly-

nomial equation Denom(s) = 0. When dealing with Laplace transforms,

the zeros of the denominator polynomial are often called the poles of

F (s), since at these values F (s) becomes infinitely tall, as described in

Section 1.5 of the text.

The discussion of partial fractions in the remainder of this document

is presented in three sections. The first section deals with the case in

which the denominator polynomial Denom(s) can be factored into the

product of two or more expressions of the form (s − pn) and the zeros

pn of Denom(s) are real and different from one another. The second
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section covers situations in which the Denom(s) polynomial cannot be

reduced to first-order terms such as s − pn, and the third section deals

with the case in which one or more of the zeros of the denominator

polynomial appear more than once, so Denom(s) may contain a term

such as (s− p1)n. Several on-line resources and texts with discussions of

partial fractions that you may find helpful are listed at the end of this

document.

Distinct Real Roots

If the denominator polynomial Denom(s) can be factored into the prod-

uct of linear (first-order) polynomials, F (s) can be written as

F (s) =
Num(s)

Denom(s)
=

Num(s)

(s− p1)(s− p2)(s− p3) · · · (s− pN )
(1.1)

and the roots of the polynomial equation are called “simple poles” since

each appears in a first-order polynomial. In this case, these roots are

“distinct” because each appears only once.

To expand F (s) into partial fractions, start by writing F (s) as a series

of fractions in which each fraction has a constant numerator and the

denominators are s− p1, s− p2, and so forth up to s− pn:

Num(s)

(s− p1)(s− p2)(s− p3) · · · (s− pN )
=

C1

s− p1
+

C2

s− p2
+

C3

s− p3
+· · ·+ CN

s− pN
.

(1.2)

The numerator constants C1, C2...Cn can be determined by multiply-

ing both sides of this equation by the left-side denominator:

Num(s) =
[Denom(s)]C1

s− p1
+

[Denom(s)]C2

s− p2
+

[Denom(s)]C3

s− p3
+ · · ·+ [Denom(s)]CN

s− pN

=
[(s− p1)(s− p2)(s− p3) · · · (s− pN )]C1

s− p1
+

[(s− p1)(s− p2)(s− p3) · · · (s− pN )]C2

s− p2

+
[(s− p1)(s− p2)(s− p3) · · · (s− pN )]C3

s− p3
+ · · ·+ [(s− p1)(s− p2)(s− p3) · · · (s− pN )]CN

s− pN
or

Num(s) =
[����(s− p1)(s− p2)(s− p3) · · · (s− pN )]C1

���s− p1
+

[(s− p1)����(s− p2)(s− p3) · · · (s− pN )]C2

���s− p2

+
[(s− p1)(s− p2)����(s− p3) · · · (s− pN )]C3

���s− p3
+ · · ·+ [(s− p1)(s− p2)(s− p3) · · ·����(s− pN )]CN

����s− pN
.
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This equation holds for any value of s, so consider what happens if you

set s = p1. In that case, the factor (s− p1) is zero. Note that this factor

appears in the numerator of every term on the right side of this equation

except the first term, in which s− p1 has canceled out. That means

Num(s)|s=p1 = [(s− p2)(s− p3) · · · (s− pN )]|s=p1C1 + 0 + 0 + · · ·+ 0.

and solving for C1 gives

C1 =
Num(s)|s=p1

[(s− p2)(s− p3) · · · (s− pN )]|s=p1
. (1.3)

Since

[(s− p2)(s− p3) · · · (s− pN )] =
Denom

s− p1
,

in some texts you’ll see Eq. 1.3 written as

C1 =
[(s− p1)Num(s)]|s=p1

Denom(s)|s=p1
= [(s− p1)F (s)]|s=p1 . (1.4)

Some students find this expression confusing, since performing the sub-

stitution s = p1 makes the factor (s− p1) zero, but remember that this

factor also appears in the denominator of F (s). So as long as you multi-

ply (s− p1) by F (s) before substituting p1 for s, the s− p1 factors will

cancel and you’ll get the correct value for C1 (the square brackets are

intended to remind you to perform the multiplication before making the

substitution).

The same analysis with s = p2 leads to

C2 =
[(s− p2)Num(s)]|s=p2

Denom(s)|s=p2
= [(s− p2)F (s)]|s=p2 (1.5)

and

CN =
[(s− pN )Num(s)]|s=pN

Denom(s)|s=pN
= [(s− pN )F (s)]|s=pN . (1.6)

Once you’ve seen the effect of multiplying through by the denominator

in the equations shown above, you should be able to understand the

reasoning behind a very quick and popular method of finding the values

for the constants in the partial-fraction expansion of F (s). That method

is called the Heaviside “cover up” method, and it’s illustrated in Figures

1.1 and 1.2.

As you can see in these figures, the trick in this technique is to cover

up some terms on both sides of Eq. 1.2. To find the constant C1, for

example, you cover up the s − p1 term in the denominator of the left
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side of the equation and the denominator of the C1 fraction on the right

side (since those terms cancel when you multiply through by the left-side

denominator), and you also cover up all the other partial fractions on

the right side (that is, those not involving C1), since those terms include

a factor of s − p1 when you multiply through, and s − p1 is zero when

you set s = p1. That leaves C1 by itself on the right side of the equation,

and F (s) without the s− p1 factor on the left side.

Figure 1.1 Using a version of the Heaviside “cover-up” method to
find C1.

Hence the partially covered-up equation in Figure 1.1 is a visual demon-

stration of Eqs. 1.3 and 1.4. But it’s important to note that the equation

shown in Figure 1.1 with covered-up terms and factors is only true when

the value of s is set to the value of p1.

The cover-up method applied to finding the constant C2 is shown in

Figure 1.2; in this case it’s the s− p2 term and all the partial fractions

not involving C2 that get covered up.

So the partially covered-up equation in Figure 1.2 is a visual demonstra-

tion of Eq. 1.5. As in the C1 case, don’t forget that the equation shown

in Figure 1.2 is true only when the value of s is set to the value of the

relevant pole (p2 in this case).

In the following example, you can see partial-fraction expansion in

action for simplifying F (s) when there are three distinct real poles with

values of 1, -2, and 4 and the numerator polynomial is 2s − 3. The
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Figure 1.2 The cover-up method used to find C2.

equation for F (s) is

F (s) =
2s− 3

(s− 1)(s+ 2)(s− 4)

and the partial-fraction expansion looks like this:

F (s) =
2s− 3

(s− 1)(s+ 2)(s− 4)
=

C1

s− 1
+

C2

s+ 2
+

C3

s− 4
.

Inserting the values of the poles (p1 = 1, p2 = −2, p3 = 4) into Eq.

1.4 for C1 gives

C1 =

[
2s− 3

(s+ 2)(s− 4)

] ∣∣∣∣
s=1

=
2(1)− 3

(3)(−3)
=

1

9

and the other constants are

C2 =

[
2s− 3

(s− 1)(s− 4)

] ∣∣∣∣
s=−2

=
2(−2)− 3

(−3)(−6)
= − 7

18

and

C3 =

[
2s− 3

(s− 1)(s+ 2)

] ∣∣∣∣
s=4

=
2(4)− 3

(3)(6)
=

5

18
.

Hence the partial-fraction expansion for F (s) in this case is

F (s) =
2s− 3

(s− 1)(s+ 2)(s− 4)
=

(
1

9

)
1

s− 1
−
(

7

18

)
1

s+ 2
+

(
5

18

)
1

s− 4
.

(1.7)
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Each of these fractions has the form of F (s) = 1
s−a as shown in Eq.

2.10 in Section 2.2 of the text. This is the Laplace transform of the

exponential time-domain function f(t) = eat, and the linearity of the

Laplace transform (discussed in Section 3.1 of the text) means that the

constants multiplying each term in Eq. 1.7 also multiply the correspond-

ing exponentials in the time domain. So

f(t) = L−1[F (s)] =

(
1

9

)
et −

(
7

18

)
e−2t +

(
5

18

)
e4t. (1.8)

Irreducible Polynomials in Denominator

As mentioned earlier in this document, in some cases the denominator of

F (s) may be a polynomial that doesn’t factor into real integers as in the

previous section. Such polynomials are sometimes called “irreducible”,

although the meaning of that term depends on the nature of the factors

under consideration.

For example, the polynomial s2− 2 has no integer roots, so this poly-

nomial is irreducible over integers, but since s2 − 2 = (s+
√

2)(s−
√

2,

this polynomial is reducible over real numbers. Likewise, the polyno-

mial s2 + 3 has no real roots, so it’s irreducible over real numbers, but

s2 +3 = (s+
√

3i)(s−
√

3i), so this polynomial is reducible over complex

numbers. In general, a polynomial of the form as2 + bs+ c is irreducible

over real numbers if (and only if) b2 − 4ac < 0.

In this section, you’ll see two approaches that can be used to sim-

plify a rational polynomial with one or more irreducible terms in the

denominator. The first uses the method of simultaneous equations and

undetermined coefficients and the second uses complex roots.

To understand how these approaches work, consider a rational func-

tion F (s) with one simple pole (p1) and an irreducible quadratic in the

denominator:

F (s) =
Num(s)

Denom(s)
=

Num(s)

(s− p1)(ads2 + bds+ cd)
(1.9)

in which the subscript “d” in ad, bd, and cd is a reminder that these

coefficients apply to the polynomial in the denominator (as opposed to

the coefficients of the numerator polynomial, which will be provided

when you need it).
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To expand F (s) using partial fractions, start by writing

F (s) =
Num(s)

Denom(s)
=

Num(s)

(s− p1)(ads2 + bds+ cd)
=

C1

s− p1
+

As+B

ads2 + bds+ cd
.

Notice that the numerator of each of the partial fractions on the right

side is a polynomial with order one less than the order of the denomina-

tor polynomial. So the numerator of a partial fraction with a first-order

polynomial (such as s−p1) in the denominator is a zeroth-order polyno-

mial (that is, a constant), while the numerator of a partial fraction with

a second-order polynomial (such as ads
2 + bds+ cd) in the denominator

is a first-order polynomial (As+B).

To determine the constants C1, A, and B, start by multiplying through

by the left-side denominator:

Num(s) =
(s− p1)(ads

2 + bds+ cd)C1

s− p1
+

(s− p1)(ads
2 + bds+ cd)(As+B)

ads2 + bds+ cd

or

Num(s) = (ads
2 + bds+ cd)C1 + (s− p1)(As+B). (1.10)

If you know the numerator polynomial Num(s), you can use this

equation to find the constants C1, A, and B by equating like powers

of s, but it’s often helpful to first determine the constant C1 by setting

s = p1 (essentially the cover-up method described above).

In this case, setting s = p1 gives

Num(s) = (ads
2 + bds+ cd)C1 + 0 s = p1

so

C1 =

[
Num(s)

ads2 + bds+ cd

] ∣∣∣∣
s=p1

.

Thus if the numerator polynomial is Num = ans
2+bns+cn, the constant

C1 is

C1 =

[
ans

2 + bns+ cn
ads2 + bds+ cd

] ∣∣∣∣
s=p1

. (1.11)

To find the constants A and B, insert the Num(s) polynomial into Eq.

1.10:

ans
2 + bns+ cn = (ads

2 + bds+ cd)C1 + (s− p1)(As+B)

= ads
2C1 + bdsC1 + cdC1 + sAs+ sB − p1As− p1B

= (adC1 +A)s2 + (bdC1 +B − p1A)s+ (cdC1 − p1B)
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and then equate like powers of s. That gives

an = adC1 +A

bn = bdC1 +B − p1A
cn = cdC1 − p1B

which means the constants are

A = an − adC1

C1 =
bn −B + p1A

bd

B =
cdC1 − cn

p1
.

(1.12)

So although all three constants C1, A, and B can be determined using

these equations, finding C1 as shown above and then using that value to

find A and B is often easier, as mentioned above.

You can see why that’s true in the following example, in which the

numerator polynomial is Num(s) = 3s2 − 2s + 4 and the denominator

of F (s) contains the product of a linear term due to a simple real pole

p1 = 3 and the quadratic polynomial 4s2 + 6s+ 3:

F (s) =
3s2 − 2s+ 4

(s− 3)(4s2 + 6s+ 3)
.

The partial-fraction expansion of F (s) can be written as

F (s) =
3s2 − 2s+ 4

(s− 3)(4s2 + 6s+ 3)
=

C1

s− 3
+

As+B

4s2 + 6s+ 3
(1.13)

and the constants can be found as

C1 =
3s2 − 2s+ 4

4s2 + 6s+ 3

∣∣∣∣
s=3

=
25

57

and

A = an − adC1 = 3− (4)
25

57
=

71

57

and

B =
cdC1 − cn

p1
=

(3) 25
57 − 4

3
= −51

57
.

Inserting these values into Eq. 1.13 yields

F (s) =
3s2 − 2s+ 4

(s− 3)(4s2 + 6s+ 3)
=

25
57

s− 3
+

71
57s−

51
57

4s2 + 6s+ 3
. (1.14)
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The Laplace transform of the first term of F (s) is straightforward,

as illustrated in the previous section of this document, but the second

term needs a bit of work to become recognizable (that is, to allow you

to determine f(t) by looking for F (s) in a table of Laplace transforms).

That work starts by factoring the quadratic in the denominator of the

second term, and a good first step is to pull out the coefficient of the

highest power of s:

71
57s−

51
57

4s2 + 6s+ 3
=

(
1

4

) 71
57s−

51
57

s2 + 3
2s+ 3

4

and then to complete the square:(
1

4

) 71
57s−

51
57

s2 + 3
2s+ 3

4

=

(
1

4

) 71
57s−

51
57

(s+ 3
4 )2 −

(
3
4

)2
+ 3

4

=

(
1

4

) 71
57s−

51
57

(s+ 3
4 )2 + 3

16

.

Although this expression isn’t in the exact form you’re likely to find in

a table of Laplace transforms, if you’ve looked at the examples of the

transform F (s) of sinusoidal time-domain functions (Section 2.3) and the

effect of multiplication by an exponential in the time domain (Section

3.2), the form of this equation may look somewhat familiar.

To take this equation from “somewhat familiar” to completely recog-

nizable, it helps to make the 71
57s term in the numerator into 71

57 (s+ 3
4 ),

to match the 71
57 (s+ 3

4 ) term in the denominator. That necessitates sub-

tracting 71
57

(
3
4

)
, like this:(

1

4

) 71
57s−

51
57

(s+ 3
4 )2 + 3

16

=

(
1

4

) 71
57 (s+ 3

4 )− 71
57

(
3
4

)
− 51

57

(s+ 3
4 )2 + 3

16

=

(
1

4

) 71
57 (s+ 3

4 )− 139
76

(s+ 3
4 )2 + 3

16

and writing this as two separate fractions gives

71
57s+ 51

57

4s2 + 6s+ 3
=

(
1

4

) 71
57 (s+ 3

4 )

(s+ 3
4 )2 + 3

16

−
(

1

4

) 139
76

(s+ 3
4 )2 + 3

16

.

Gathering the leading constants makes this

71
57s+ 51

57

4s2 + 6s+ 3
=

(
71

228

)
s+ 3

4

(s+ 3
4 )2 + 3

16

−
(

139

304

)
1

(s+ 3
4 )2 + 3

16

which can be compared to the Laplace transform F (s) of time-domain

exponentially weighted cosine and sine functions:

L[eat cos (ω1t)] =
s− a

(s− a) + ω2
1
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and

L[eat sin (ω1t)] =
ω1

(s− a) + ω2
1

.

So in this case a = − 3
4 and ω2

1 = 3
16 , so ω1 =

√
3
4 for both terms. The

first term (with s+ 3
4 in the numerator) is ready to be inverse-Laplace-

transformed into the time domain, but the second term needs an ω1 in

the numerator, so a bit of adjustment to the leading constant is needed.

Doing that makes the previous expression

71
57s+ 51

57

4s2 + 6s+ 3
=

(
71

228

)
s+ 3

4

(s+ 3
4 )2 + 3

16

−
(

139

76
√

3

) √
3
4

(s+ 3
4 )2 + 3

16

which is ready to be inserted into Eq. 1.14:

F (s) =
3s2 − 2s+ 4

(s− 3)(4s2 + 6s+ 3)
=

25
57

s− 3
+

(
71

228

)
s+ 3

4

(s+ 3
4 )2 + 3

16

−
(

139

76
√

3

) √
3
4

(s+ 3
4 )2 + 3

16

.

and the inverse Laplace transform gives the time-domain function f(t):

f(t) = L−1[F (s)] = L−1
[ 25

57

s− 3

]
+ L−1

[(
71

228

)
s+ 3

4

(s+ 3
4 )2 + 3

16

]
+ L−1

[(
− 139

76
√

3

) √
3
4

(s+ 3
4 )2 + 3

16

]

=
25

57
e3t +

71

228
e−

3
4 t cos

(√
3

4
t

)
− 139

76
√

3
e−

3
4 t sin

(√
3

4
t

)
or writing the coefficients using decimals rather than factions:

f(t) = 0.4386e3t + 0.3114e−
3
4 t cos

(√
3

4
t

)
− 1.056e−

3
4 t sin

(√
3

4
t

)
.

(1.15)

The fact that a quadratic polynomial may be irreducible over the real

numbers but reducible over complex numbers suggests an alternative

approach to solving this type of problem. That approach involves fac-

toring a denominator polynomial using complex roots, and to see how

that works, note that a quadratic polynomial as2+bs+c can be factored

as by writing a quadratic equation:

as2 + bs+ c = a(s− r1)(s− r2) = 0

in which r1 and r2 are the (possibly complex) roots of this equation,

also called the zeros of the function as2 + bs + c. Note that when the

leading coefficient a (that is, the coefficient of the highest power of s)

is not one, it’s necessary to multiply this coefficient by the product of
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the two terms containing the roots of the quadratic equation (s−r1 and

s− r2).

To find the roots of the quadratic equation, you can use the quadratic

formula

s =
−b±

√
b2 − 4ac

2a
,

and if b2 − 4ac < 0, these roots will be complex – that is, they will

contain an imaginary part, since the square root of a negative number

is imaginary. Also, the second root will be the complex conjugate of the

first because the imaginary parts must have opposite signs due to the ±
sign in the quadratic formula.

Since these roots represent two of the poles of the function F (s), it

makes sense to call them p and p∗, and since they may be complex, they

can be written as

p = Re(p) + i Im(p)

p∗ = Re(p)− i Im(p)

in which the asterisk indicates the complex conjugate.

If the function F (s) has one simple real pole p1 and an irreducible

polynomial (over the real numbers) in its denominator, Eq. 1.9 can be

factored as

F (s) =
Num(s)

Denom(s)
=

Num(s)

(s− p1)(ads2 + bds+ cd)
=

Num(s)

(s− p1)ad(s− p2)(s− p∗2)
.

Expanding F (s) using partial fractions now looks like this:

Num(s)

(s− p1)ad(s− p2)(s− p∗2)
=

C1

(s− p1)
+

C2

(s− p2)
+

C3

(s− p∗1)

and multiplying through by the denominator of the left side gives

Num(s) = ad(s−p2)(s−p∗2)C1+(s−p1)ad(s−p2)∗C2+(s−p1)ad(s−p2)C3.

Thus the coefficients C1, C2, and C3 can be determined using the same

approach shown in the first section of this document for simple real roots:

solving simultaneous equations (and/or using the cover-up method).

Those methods give

C1 =
[(s− p1)Num(s)]|s=p1

Denom(s)|s=p1
= [(s− p1)F (s)]|s=p1

C2 =
[(s− p2)Num(s)]|s=p2

Denom(s)|s=p2
= [(s− p2)F (s)]|s=p2 .
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C3 =
[(s− p∗2)Num(s)]|s=p∗2

Denom(s)|s=p∗2
= [(s− p∗2)F (s)]|s=p∗2 .

To see how this works, you can apply this approach to the example

worked above. F (s) in that case is given by

F (s) =
3s2 − 2s+ 4

(s− 3)(4s2 + 6s+ 3)
,

and using the quadratic formula to find the roots of the polynomial

4s2 + 6s+ 3 gives

−b±
√
b2 − 4ac

2a
=
−6±

√
(6)2 − 4(4)(3)

2(4)
=
−6

8
±
√
−12

8
= −3

4
±
√

3

4
i

so p2 = − 3
4 +

√
3
4 i and p∗2 = − 3

4 −
√
3
4 i.

With these roots, along with the real root p1 = 3, the partial-fraction

expansion of F (s) is

F (s) =
3s2 − 2s+ 4

(s− 3)(4s2 + 6s+ 3)
=

C1

s− 3
+

C2

s−
(
− 3

4 +
√
3
4 i
)+

C3

s−
(
− 3

4 −
√
3
4 i
] .

(1.16)

Solving for the constants C1, C2, and C3 gives

C1 =
3s2 − 2s+ 4

4s2 + 6s+ 3

∣∣∣∣
s=3

=
25

57
= 0.4386

and

C2 =
3s2 − 2s+ 4

(s− 3)(4)
[
s−

(
− 3

4 −
√
3
4 i
)]∣∣∣∣

s=− 3
4+
√

3
4 i

= 0.1557 + 0.5280i

and

C3 =
3s2 − 2s+ 4

(s− 3)(4)
[
s−

(
− 3

4 +
√
3
4 i
)]∣∣∣∣

s=− 3
4−
√

3
4 i

= 0.1557− 0.5280i

and inserting these values into Eq. 1.16 makes F (s)

F (s) =
3s2 − 2s+ 4

(s− 3)(4s2 + 6s+ 3)
=

0.4386

s− 3
+

0.1557 + 0.5280i

s−
(
− 3

4 +
√
3
4 i
)+

0.1557− 0.5280i

s−
(
− 3

4 −
√
3
4 i
) .

Although the complex quantities in the second and third terms may

make this expression look quite different from the types of F (s) you’ve

seen before, note that the denominators are of the form s−a, albeit with

complex a. Note also that the numerators of these two terms are just
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constants, although these constants are complex. So the inverse Laplace

transform of F (s) is straightforward:

f(t) = L−1[F (s)] = L−1
[

0.4386

s− 3

]
+ L−1

0.1557 + 0.5280i

s−
(
− 3

4 +
√
3
4 i
)
+ L−1

0.1557− 0.5280i

s−
(
− 3

4 −
√
3
4 i
)


= 0.4386e3t + (0.1557 + 0.5280i)e

(
− 3

4+
√

3
4 i

)
t

+ (0.1557− 0.5280i)e

(
− 3

4−
√

3
4 i

)
t
.

This expression for f(t) is correct, but it can be put into more-familiar

form by writing the complex leading constants in the second and third

terms in polar form – that is, using the magnitude |s| and phase φ of

the complex quantity s.

Real
axis

Imaginary
axis Re[s]

Im[s]

s=Re[s]+ i Im[s]

|s|=
[(R

e[s
])
2 +(Im

[s]
)2 ]1

/2

φ = tan-1

Re[s]
Im[s]

|s|eiφ  = |s|(cosφ+i sinφ)

sinφ = 
   |s|
Im[s]

cosφ = 
   |s|
Re[s]

 = |s|             + |s| i
   |s|
Re[s]

   |s|
Im[s]

⸫ |s|eiφ = Re[s]+ i Im[s]

Figure 1.3 The polar form of complex number s.

You can see how that works in Fig. 1.3, which illustrates why the

expression s = Re[s] + Im[s]i is equivalent to |s|eiφ. In this case, the

magnitude is given by

|0.1557+0.5280i| =
√

(Re[s])2 + (Im[s])2 =
√

(0.1557)2 + (0.5280)2 = 0.55048

and the phase is

φ(0.1557 + 0.5280i) = tan−1
Im[s]

Re[s]
= tan−1

0.5280

0.1557
= 73.57◦.
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Inserting these values into the expression shown above for f(t) gives

f(t) = 0.4386e3t + 0.55048ei73.57
◦
e

(
− 3

4+
√

3
4 i

)
t

+ 0.55048e−i73.57
◦
e

(
− 3

4−
√

3
4 i

)
t

= 0.4386e3t + 0.55048e−
3
4 t
(
ei(73.57

◦+
√

3
4 t) + e−i(73.57

◦+
√

3
4 t)
)

= 0.4386e3t + 0.55048e−
3
4 t[2 cos (73.57◦ +

√
3

4
t)]

= 0.4386e3t + 1.10096e−
3
4 t[cos (73.57◦ +

√
3

4
t)].

Using the identity cos (x+ y) = cosx cos y − sinx sin y makes this

f(t) = 0.4386e3t + 1.10096e−
3
4 t[cos (73.57◦) cos (

√
3

4
t)− sin (73.57◦) sin (

√
3

4
t)]

= 0.4386e3t + 1.10096e−
3
4 t[0.28284 cos (

√
3

4
t)− 0.95916 sin (

√
3

4
t)]

= 0.4386e3t + 0.3114e−
3
4 t cos (

√
3

4
t)− 1.056e−

3
4 t sin (

√
3

4
t)

in agreement with the result of using the simultaneous-equation ap-

proach with real roots shown above (Eq. 1.15).

You may encounter a situation in which the denominator of F (s)

contains two irreducible quadratic polynomials rather than one simple

pole and one quadratic polynomial. So instead of Eq. 1.9, F (s) will look

like this:

F (s) =
Num(s)

Denom(s)
=

Num(s)

(ad1s2 + bd1s+ cd1)(ad2s2 + bd2s+ cd2)
(1.17)

in which the subscript “d1” refer to the denominator’s first quadratic

and “d2” refer to the denominator’s second quadratic.

With two quadratic (second-order) polynomials in the denominator,

F (s) can be simplified using a partial-fraction expansion with first-order

polynomials in the numerators of both fractions:

Num(s)

(ad1s2 + bd1s+ cd1)(ad2s2 + bd2s+ cd2)
=

As+B

ad1s2 + bd1s+ cd1
+

Cs+D

ad2s2 + bd2s+ cd2

and multiplying both sides by the denominator of the left side gives

Num(s) =(ad2s
2 + bd2s+ cd2)(As+B) + (ad1s

2 + bd1s+ cd1)(Cs+D)

= ad2As
3 + bd2As

2 + cd2As+ ad2Bs
2 + bd2Bs+ cd2B

+ ad1Cs
3 + bd1Cs

2 + cd1Cs+ ad1Ds
2 + bd1Ds+ cd1D

= (ad2A+ ad1C)s3 + (ad2B + bd2A+ bd1C + ad1D)s2

+ (bd2B + cd2A+ cd1C + bd1D)s+ (cd2B + cd1D).
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Again writing the numerator polynomial as Num = ans
2 + bns + cn

and equating like powers of s makes this

0 = ad2A+ ad1C

an = ad2B + bd2A+ bd1C + ad1D

bn = bd2B + cd2A+ cd1C + bd1D

cn = cd2B + cd1D

These simultaneous equations can be solve using matrix algebra:
ad2 0 ad1 0

bd2 ad2 bd1 ad1
cd2 bd2 cd1 bd1
0 cd2 0 cd1



A

B

C

D

 =


0

an
bn
cn


so the constants are

A

B

C

D

 =


ad2 0 ad1 0

bd2 ad2 bd1 ad1
cd2 bd2 cd1 bd1
0 cd2 0 cd1


−1

0

an
bn
cn

 .

In all of the cases discussed to this point, the roots of the denominator

polynomials have been distinct, occurring only once in the denominator.

The next section shows you how to handle cases involving repeated roots.

Repeated Roots

When a root of the denominator polynomial equation has a multiplicity

greater than one (that is, when a factor such as s3 = (s)(s)(s) or a

quantity such as (s− a)2 = (s− a)(s− a) appears in the denominator),

F (s) is said to have “repeated roots”. The presence of repeated roots

means that additional fractions must be included in the partial-fraction

expansion, as explained below.

Consider the case in which F (s) has one simple pole (p1) and one

repeated pole (p2):

F (s) =
Num(s)

Denom(s)
=

Num(s)

(s− p1)(s− p2)r

in which the repeated root has a multiplicity of r. Expanding F (s) using
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partial fractions looks like this:

Num(s)

(s− p1)(s− p2)r
=

C1

s− p1
+

C21

s− p2
+

C22

(s− p2)2
+

C23

(s− p1)3
+· · ·+ C2r

(s− p1)r

Notice that this expansion includes one fraction with denominator of

(s− p2)r along with additional fractions with denominators of all lower

powers, so the exponents of the s − p2 terms range from 1 to r. Notice

also that the constants now have two sub-indices, with the first digit

representing the pole number (2 in the case shown below) and the second

digit representing the power of the repeated factor.

So if r = 2, the partial expansion of F (s) is

Num(s)

(s− p1)(s− p2)2
=

C1

s− p1
+

C21

s− p2
+

C22

(s− p2)2

and multiplying through by the denominator of the left side gives

Num(s) =
(s− p1)(s− p2)2C1

s− p1
+

(s− p1)(s− p2)2C21

s− p2
+

(s− p1)(s− p2)2C22

(s− p2)2

= (s− p2)2C1 + (s− p1)(s− p2)C21 + (s− p1)C22.

Just as in the case of simple poles discussed above, the C1 constant

can be found by setting s = p1:

Num(s) = (s− p2)2C1 + (s− p1)(s− p2)C21 + (s− p1)C22

= (s− p2)2C1 + 0 + 0 (for s = p1)

so

C1 =
Num(s)

(s− p2)2

∣∣∣∣
s=p1

. (1.18)

Likewise, the C22 constant can be found by setting s = p2:

Num(s) = (s− p2)2C1 + (s− p1)(s− p2)C21 + (s− p1)C22

= 0 + 0 + (s− p1)C22 (for s = p2)

so

C22 =
Num(s)

s− p1

∣∣∣∣
s=p2

. (1.19)

However, to find the constants for all the terms with lower powers of



18

the repeated factor, it’s necessary to write out the simultaneous equa-

tions:

Num(s) = (s− p2)2C1 + (s− p1)(s− p2)C21 + (s− p1)C22

= s2C1 − 2sp2C1 + p22C1 + s2C21 − sp2C21 − sp1C21 + p1p2C21 + sC22 − p1C22

= (C1 + C21)s2 + (−2p2C1 − p2C21 − p1C21 + C22)s+ (p22C1 + p1p2C21 − p1C22).

So if the numerator polynomial is Num(s) = ans
2 + bns+ cn, equating

equal powers of s gives

an = C1 + C21

bn = −2p2C1 − p2C21 − p1C21 + C22

cn = p22C1 + p1p2C21 − p1C22.

(1.20)

As in the previous cases, the constants can be found using matrix alge-

bra:  1 1 0

−2p2 −(p1 + p2) 1

p22 p1p2 −p1

C1

C21

C22

 =

anbn
cn


and C1

C21

C22

 =

 1 1 0

−2p2 −(p1 + p2) 1

p22 p1p2 −p1

−1anbn
cn

 . (1.21)

But since C1 is known, you can also use the first equation in the group

Eq. 1.20 to quickly find C21:

C21 = an − C1. (1.22)

You can see these equations at work in the following example, in which

F (s) has one simple root with p1 = 3 and one repeated root with p2 = −2

with a multiplicity of two (so r = 2). Thus F (s) is given by the equation

F (s) =
3s2 − 2s+ 4

(s− 3)(s+ 2)2
. (1.23)

The constant C1 can be found using Eq. 1.18:

C1 =
Num(s)

(s− p2)2

∣∣∣∣
s=p1

=
3s2 − 2s+ 4

(s− p2)2

∣∣∣∣
s=p1

=
3(3)2 − 2(3) + 4

[3− (−2)]2
=

25

25
= 1
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and Eq. 1.19 gives C22 as

C22 =
Num(s)

s− p1

∣∣∣∣
s=p2

=
3s2 − 2s+ 4

s− p1

∣∣∣∣
s=p2

=
3(−2)2 − 2(−2) + 4

−2− 3
=

20

−5
= −4.

. That leaves only C21, which can be found using Eq. 1.22:

C21 = an − C1 = 3− 1 = 2.

Alternatively, if you have an easy way to do the required matrix inver-

sion, Eq. 1.21 returns all three constants at once:C1

C21

C22

 =

 1 1 0

−2(−2) −(3− 2) 1

(−2)2 (3)(−2) −3

−1 3

−2

4

 =

 1

2

−4


which agrees with the results shown above.

Here’s an alternative approach to finding the constants of all of the

partial fractions involving repeated roots. That approach uses the equa-

tion

C2n =
1

(r − n)!

dr−n

dsr−n

[
(s− p2)rF (s)

]∣∣∣∣
s=p2

. (1.24)

So if r = 2, then

C21 =
1

(2− 1)!

d2−1

ds2−1

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

=
d

ds

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

and

C22 =
1

(2− 2)!

d2−2

ds2−2

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

=
[
(s− p2)2F (s)

]
|s=p2

since 0! = 1 and d0

ds0 [(s− p2)2F (s)] = (s− p2)2F (s).

Here’s how the derivative equation (Eq. 1.24) is used to find C21, and

C22 for F (s) given by Eq. 1.23 above. For C21, the derivative equation
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gives

C21 =
1

(2− 1)!

d2−1

ds2−1

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

=
d

ds

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

=
d

ds

[
(s− p2)2(3s2 − 2s+ 4)

(s− p1)(s− p2)2

]∣∣∣∣
s=p2

=
d

ds

[
(3s2 − 2s+ 4)(s− p1)−1

]∣∣∣∣
s=p2

=

[
6s− 2

s− p1
+

(−1)(3s2 − 2s+ 4)

(s− p1)2

] ∣∣∣∣
s=p2

.

Inserting values p1 = 3 and p2 = −2 gives

C21 =

[
6(−2)− 2

−2− 3
+

(−1)[3(−2)2 − 2(−2) + 4]

(−2− 3)2

]
=
−14

−5
+
−20

25
= 2.

For C22, the derivative equation gives

C22 =
[
(s− p2)2F (s)

] ∣∣∣∣
s=p2

=

[
(s− p2)2

(
3s2 − 2s+ 4

(s− p1)(s− p2)2

)] ∣∣∣∣
s=p2

= (1)

[
3s2 − 2s+ 4

s− p1

] ∣∣∣∣
s=p2

,

and inserting values p1 = 3 and p2 = −2 gives

C22 =

[
3(−2)2 − 2(−2) + 4

−2− 3

]
=

20

−5
= −4.

The same techniques can be used to find the partial-fraction expansion

of rational functions with repeated roots of higher multiplicity, although

the calculations become a bit more tedious.

To see an example of that, consider a rational function with one simple

root and one repeated root with multiplicity r = 3. In that case, F (s) is
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give by

Num(s)

(s− p1)(s− p2)3
=

C1

s− p1
+

C21

s− p2
+

C22

(s− p2)2
+

C23

(s− p2)3

and multiplying through by the denominator of the left side gives

Num(s) =
(s− p1)(s− p2)3C1

s− p1
+

(s− p1)(s− p2)3C21

s− p2
+

(s− p1)(s− p2)3C22

(s− p2)2
+

(s− p1)(s− p2)3C23

(s− p2)3

= (s− p2)3C1 + (s− p1)(s− p2)2C21 + (s− p1)(s− p2)C22 + (s− p1)C23.

Just as in the r = 2 case, the C1 constant can be found by setting

s = p1:

Num(s) = (s− p2)3C1 + (0)(s− p2)2C21 + (0)(s− p2)C22 + (0)C23

= (s− p2)3C1 (for s = p1)

so

C1 =
Num(s)

(s− p2)3

∣∣∣∣
s=p1

. (1.25)

In this r = 3 case, it’s the C23 constant that can be found by setting

s = p2:

Num(s) = (0)3C1 + (s− p1)(0)2C21 + (s− p1)(0)C22 + (s− p1)C23

= (s− p1)C23 (for s = p2)

so

C23 =
Num(s)

s− p1

∣∣∣∣
s=p2

. (1.26)

But to determine C21 and C22, it’s necessary to use

Num(s) = (s− p2)3C1 + (s− p1)(s− p2)2C21 + (s− p1)(s− p2)C22 + (s− p1)C23

= (s3 − 3s2p2 + 3sp22 − p32)C1 + [s3 − s2(2p2 + p1) + s(p22 + p1p2)− p1p22]C21

+ (s2 − p1s− p2s+ p1p2)C22 + sC23 − p1C23

= (C1 + C21)s3 + [−3p2C1 − (2p2 + p1)C21 + C22]s2

+ [3p22C1 + (p22 + 2p1p2)C21 − (p1 + p2)C22 + C23]s

+ (−p32C1 − p1p22C21 + p1p2C22 − p1C23).

So if the numerator polynomial is given by the quadratic Num(s) =
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ans
2 + bns+ cn, equating like terms gives

0 = C1 + C21

an = −3p2C1 − (2p2 + p1)C21 + C22

bn = 3p22C1 + (p22 + 2p1p2)C21 − (p1 + p2)C22 + C23

cn = −p32C1 − p1p22C21 + p1p2C22 − p1C23.

(1.27)

The matrix-algebra approach to solving these simultaneous equations

now looks like this:
1 1 0 0

−3p2 −(2p2 + p1) 1 0

3p22 p22 + 2p1p2 −(p1 + p2) 1

−p32 −p1p22 p1p2 −p1



C1

C21

C22

C23

 =


0

an
bn
cn


and

C1

C21

C22

C23

 =


1 1 0 0

−3p2 −(2p2 + p1) 1 0

3p22 p22 + 2p1p2 −(p1 + p2) 1

−p32 −p1p22 p1p2 −p1


−1

0

an
bn
cn

 .

(1.28)

But since C1 and C23 can be found as shown above, it’s also possible

to find C21 and C22 using the first and third equations from the equation

group (Eq. 1.27) shown above:

C21 = −C1.

and Eq. 1.27 gives

C22 =
cn + (p32 − p1p22)C1 + p1C23

p1p2
.

Using Eqs. 1.25 and 1.26 gives

C1 =
Num(s)

(s− p2)3

∣∣∣∣
s=p1

=
3s2 − 2s+ 4

[s− (−2)]3

∣∣∣∣
s=p1

=
3(3)2 − 2(3) + 4

(3 + 2)3
=

25

125
=

1

5
.

and

C23 =
Num(s)

s− p1

∣∣∣∣
s=p2

=
3s2 − 2s+ 4

s− p1

∣∣∣∣
s=p2

=
3(−2)2 − 2(−2) + 4

−2− 3
=

20

−5
= −4.
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Eq. 1.27 gives

C21 = −C1 = −1

5
.

and

C22 =
cn + (p32 − p1p22)C1 + p1C23

p1p2
=

4 + [(−2)3 − (3)(−2)2]
(
1
5

)
+ 3(−4)

(3)(−2)

=
−12

−6
= 2.

These values can be checked against the results of using the matrices

in Eq. 1.28, which give
C1

C21

C22

C23

 =


1 1 0 0

−3(−2) −[2(−2) + 3] 1 0

3(−2)2 (−2)2 + 2(3)(−2) −(3− 2) 1

−(−2)3 (−3)(−2)2 (3)(−2) −3


−1

0

3

−2

4

 =


0.2

−0.2

2

−4

 .

(1.29)

in accordance with results shown above.

The derivative approach to finding the coefficients of the partial frac-

tions of repeated poles also gets a bit more complicated for higher mul-

tiplicities, as you an see for the r = 3 case. Recall that the derivative

equation is

C2n =
1

(r − n)!

dr−n

dsr−n

[
(s− p2)rF (s)

]∣∣∣∣
s=p2

so if r = 3, then you can use this equation to find C21,C22, and C23. For

C21, second derivatives are required:

C21 =
1

(3− 1)!

d3−1

ds3−1

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

=
1

2

d2

ds2

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

while a first derivative is needed to find C22

C22 =
1

(3− 2)!

d3−2

ds3−2

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

=
1

1

d

ds

[
(s− p2)2F (s)

]∣∣∣∣
s=p2
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and the zeroth derivative (that is, no derivative) is needed for C23:

C23 =
1

(3− 3)!

d3−3

ds3−3

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

=
[
(s− p2)2F (s)

]
|s=p2

once again using 0! = 1 and d0

ds0 [(s− p2)2F (s)] = (s− p2)2F (s).

For F (s) given by Eq. 1.23, taking the required derivatives looks like

this:

C21 =
1

2

d2

ds2

[
(s− p2)2F (s)

]∣∣∣∣
s=p2

=
1

2

d2

ds2

[
(3s2 − 2s+ 4)(s− p1)−1

]∣∣∣∣
s=p2

=
1

2

d

ds

[
6s− 2

s− p1
+

(−1)(3s2 − 2s+ 4)

(s− p1)2

] ∣∣∣∣
s=p2

=
1

2

[
6

s− p1
+

(−1)(6s− 2)

(s− p1)2
− 6s− 2

(s− p1)2
− (−2)(3s2 − 2s+ 4)

(s− p1)3

] ∣∣∣∣
s=p2

Inserting values p1 = 3 and p2 = −2 yields

C21 =
1

2

[
6

−2− 3
+

(−1)(6(−2)− 2)

(−2− 3)2
− 6(−2)− 2

(−2− 3)2
− (−2)(3(−2)2 − 2(−2) + 4)

(−2− 3)3

]
=

1

2

[
6

−5
+

14

(25
− −14

25
− −40

−125

]
=

1

2

(
−50

125

)
= −1

5
.

The cover-up method gives C1 as

C1 =
ans

2 + bns+ cn
s− p2

∣∣∣∣
s=p1

=
3(3)2 + (−2)(3) + 4

3− (−2)
=

1

5

and

C22 =
d

ds

[
(3s2 − 2s+ 4)(s− p1)−1

]∣∣∣∣
s=p2

=

[
6s− 2

s− p1
+

(−1)(3s2 − 2s+ 4)

(s− p1)2

] ∣∣∣∣
s=p2

=
6(−2)− 2

−2− 3
+

(−1)(3(−2)2 − 2(−2) + 4)

(−2− 3)2

=
−14

−5
+
−20

25
=

10

5
= 2
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and

C23 =

[
3s2 − 2s+ 4

s− p1

]
|s=p2

=

[
3(−2)2 − 2(−2) + 4

−2− 3

]
=

20

−5
= −4

in agreement with the results shown above.

The final section of this document contains a few on-line resources

and texts that you may find helpful in understanding partial fractions.
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