
Supplemental Material for A Student’s

Guide to Laplace Transforms

Vectors and Functions

Daniel A. Fleisch





1

Vectors and Functions

This supplemental document provides an overview of vectors, abstract

vectors, and functions that goes beyond the discussion in A Student’s

Guide to Laplace Transforms. The reason for providing this information

is that you may find it helpful in understanding why and how inte-

gral transforms such as the Fourier transform and the Laplace trans-

form and the discrete-time Z-transform work. This document is a re-

vised and condensed version of the first chapter of A Student’s Guide to

the Schrödinger Equation, in which the relationship between quantum

wavefunctions and abstract vectors is explained.

This document contains five sections, beginning with the basics of

vectors in Section 1.1. Dirac notation in then introduced in Section 1.2,

and abstract vectors and functions are discussed in Section 1.3. The rules

pertaining to complex numbers, vectors, and functions are reviewed in

Section 1.4, followed by an explanation of orthogonal functions in Section

1.5.

1.1 Vector Basics

When you first learned about vectors, you probably thought of a vector

as an entity that has both magnitude (length) and direction (angles from

some set of axes). You may also have learned to write a vector as a letter

with a little arrow over its head (such as ~A), and to “expand” a vector

like this:

~A = Ax ı̂+Ay ̂+Az k̂. (1.1)
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Figure 1.1 Vector ~A with its Cartesian components Ax, Ay, and Az

and the Cartesian unit vectors ı̂, ̂, and k̂.

In this expansion, Ax, Ay, and Az are the components of vector ~A, and

ı̂, ̂, and k̂ are directional indicators called “basis vectors” of the coor-

dinate system you’re using to expand vector ~A. In this case, that’s the

Cartesian (x, y, z) coordinate system shown in Fig. 1.1. It’s important

to understand that vector ~A exists independently of any particular ba-

sis system; the same vector may be expanded in many different basis

systems.

The basis vectors ı̂, ̂ and k̂ are also called “unit vectors” because they

each have length of one unit. And what unit is that? Whatever unit

you’re using to express the length of vector ~A. It may help you to think

of a unit vector as defining one “step” along a coordinate axis, so an

expression such as

~A = 5ı̂− 2̂+ 3k̂, (1.2)

tells you to take five steps in the (positive) x-direction, two steps in the

(negative) y-direction, and three steps in the (positive) z-direction to

get from the start to the end of the vector ~A.

You may also recall that the magnitude (that is, the length or “norm”

of a vector), usually written as | ~A| or ‖ ~A‖ , can be found from its Carte-
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sian components using the equation

| ~A| =
√
A2
x +A2

y +A2
z, (1.3)

and that the negative of a vector (such as − ~A) is a vector of the same

length as ~A but pointed in the opposite direction.
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Figure 1.2 Adding vectors graphically.

Adding two vectors together can be done graphically, as shown in Fig.

1.2, by sliding one vector (without changing its direction or length) so

that its tail is at the head of the other vector; the sum is a new vector

drawn from the tail of the undisplaced vector to the head of the displaced

vector. Alternatively, vectors may be added analytically by adding the

components in each direction:

~A = Ax ı̂+Ay ̂+Az k̂

+ ~B = Bx ı̂+By ̂+Bz k̂

~C = ~A+ ~B = (Ax +Bx)̂ı+ (Ay +By)̂+ (Az +Bz)k̂. (1.4)

Another important operation is multiplying a vector by a scalar (that is,

a number with no directional indicator), which changes the length but

not the direction of the vector. So if α is a scalar, then

~D = α ~A = α(Ax ı̂+Ay ̂+Az k̂)

= αAx ı̂+ αAy ̂+ αAz k̂.
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Scaling each component equally (by factor α) means that vector ~D points

in the same direction as ~A, but the length of ~D is

| ~D| =
√
D2
x +D2

y +D2
z

=
√

(αAx)2 + (αAy)2 + (αAz)2

=
√
α2(A2

x +A2
y +A2

z) = α| ~A|.

So the vector’s length is scaled by the factor α, but its direction remains

the same (unless α is negative, in which case the direction reverses, but

the vector still lies along the same line).

In addition to summing vectors, multiplying vectors by scalars, and

finding the length of vectors, another important operation is the scalar1

product (also called the “dot product”) of two vectors, usually written

as ( ~A, ~B) or ~A ◦ ~B. The scalar product is given by

( ~A, ~B) = ~A ◦ ~B = | ~A|| ~B| cos θ (1.5)

in which θ is the angle between ~A and ~B. In Cartesian coordinates, the

dot product may be found by multiplying corresponding components

and summing the results:

( ~A, ~B) = ~A ◦ ~B = AxBx +AyBy +AzBz. (1.6)

Notice that if vectors ~A and ~B are parallel, then the dot product is

~A ◦ ~B = | ~A|| ~B| cos(0◦) = | ~A|| ~B| (1.7)

since cos(0◦) = 1. Alternatively, if ~A and ~B are perpendicular, then the

value of the dot product is zero:

~A ◦ ~B = | ~A|| ~B| cos(90◦) = 0 (1.8)

since cos(90◦) = 0.

The dot product of a vector with itself gives the square of the magni-

tude of the vector:

~A ◦ ~A = | ~A|| ~A| cos(0◦) = | ~A|2. (1.9)

A generalized version of the scalar product called the “inner product”

is extremely useful in several areas of physics and engineering, so it’s

worth a bit of your time to think about what happens when you perform

1 Note that this is called the scalar product because the result is a scalar, not
because a scalar is involved in the multiplication.
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Figure 1.3 (a) The projection of vector ~B onto the direction of vector
~A and (b) the projection of vector ~A onto the direction of vector ~B.

an operation such as ~A◦ ~B. As you can see in Fig. 1.3a, the term | ~B| cos θ

is the projection of vector ~B onto the direction of vector ~A, so the dot

product gives an indication of “how much” of ~B lies along the direction of
~A.2 Alternatively, you can isolate the | ~A| cos θ portion of the dot product
~A◦ ~B = | ~A|| ~B| cos θ, which is the projection of ~A onto the direction of ~B,

as shown in Fig. 1.3b. From this perspective, the dot product indicates

“how much” of vector ~A lies along the direction of ~B. Either way, the

dot product provides a measure of how much one vector “contributes”

to the direction of another.

To make this concept more specific, consider what you get by dividing

the dot product by the magnitude of ~A times the magnitude of ~B:

~A ◦ ~B
| ~A|| ~B|

=
| ~A|| ~B| cos θ

| ~A|| ~B|
= cos θ (1.10)

which ranges from one to zero as the angle between the vectors increases

2 If you find the phrase “lies along” troubling (since vector ~A and vector ~B lie in
different directions), perhaps it will help to imagine a tiny traveler walking from

the start to the end of vector ~B, and asking “In walking along vector ~B, how

much does a traveler advance in the direction of vector ~A?”
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from 0◦ to 90◦. So if two vectors are parallel, each contributes its entire

length to the direction of the other, but if they’re perpendicular, neither

makes any contribution to the direction of the other.

This understanding of the dot product makes it easy to comprehend

the results of taking the dot product between pairs of the Cartesian unit

vectors:

Each of these unit vectors

lies entirely along itself


ı̂ ◦ ı̂ = |̂ı||̂ı| cos 0◦ = (1)(1)(1) = 1

̂ ◦ ̂ = |̂||̂| cos 0◦ = (1)(1)(1) = 1

k̂ ◦ k̂ = |k̂||k̂| cos 0◦ = (1)(1)(1) = 1

No part of these unit vectors

lies along any other


ı̂ ◦ ̂ = |̂ı||̂| cos 90◦ = (1)(1)(0) = 0

ı̂ ◦ k̂ = |̂ı||k̂| cos 90◦ = (1)(1)(0) = 0

̂ ◦ k̂ = |̂||k̂| cos 90◦ = (1)(1)(0) = 0

The Cartesian unit vectors are called “orthonormal” because they’re

orthogonal (each is perpendicular to the others) as well as normalized

(each has magnitude of one). They’re also called a “complete set” be-

cause any vector in three-dimensional Cartesian space can be made up

of a weighted combination of these three basis vectors.

Here’s a very useful trick: orthonormal basis vectors make it easy to

use the dot product to determine the components of a vector. For a

vector ~A, the components Ax, Ay, and Az can be found by dotting the

basis vectors ı̂, ̂, and k̂ into ~A:

Ax = ı̂ ◦ ~A = ı̂ ◦ (Ax ı̂+Ay ̂+Az k̂)

= Ax(̂ı ◦ ı̂) +Ay (̂ı ◦ ̂) +Az (̂ı ◦ k̂)

= Ax(1) +Ay(0) +Az(0) = Ax.

Likewise for Ay

Ay = ̂ ◦ ~A = ̂ ◦ (Ax ı̂+Ay ̂+Az k̂)

= Ax(̂ ◦ ı̂) +Ay(̂ ◦ ̂) +Az(̂ ◦ k̂)

= Ax(0) +Ay(1) +Az(0) = Ay.

And for Az

Az = k̂ ◦ ~A = k̂ ◦ (Ax ı̂+Ay ̂+Az k̂)

= Ax(k̂ ◦ ı̂) +Ay(k̂ ◦ ̂) +Az(k̂ ◦ k̂)

= Ax(0) +Ay(0) +Az(1) = Az.
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This technique of digging out the components of a vectors using the

dot product and basis vectors is extremely valuable in several areas of

physics, including quantum mechanics.

1.2 Dirac Notation

When making the connection between vectors and functions, it’s impor-

tant for you to realize that vector components such as Ax, Ay, and Az
have meaning only when tied to a set of basis vectors (Ax to ı̂, Ay to

̂, and Az to k̂). If you had chosen to represent vector ~A using a differ-

ent set of basis vectors (for example, by rotating the x-, y-, and z-axes

and using basis vectors aligned with the rotated axes), you could have

written the same vector ~A as

~A = A′x ı̂
′ +A′y ̂

′ +A′z k̂
′

in which the rotated axes are designated x′, y′, and z′, and the basis

vectors pointing along those axes are ı̂′, ̂′, and k̂′.

When you expand a vector such as ~A in terms of different basis vectors,

the vector components of the vector may change, but the new compo-

nents and the new basis vectors add up to give the same vector ~A. You

may even choose to use a non-Cartesian set of basis vectors such as the

spherical basis vectors r̂, θ̂, and φ̂; expanding vector ~A in this basis looks

like this:

~A = Ar r̂ +Aθ θ̂ +Aφφ̂.

Once again, different components, different basis vectors, but the com-

bination of components and basis vectors gives the same vector ~A.

What’s the advantage of using one set of basis vectors or another? De-

pending on the geometry of the situation, it may be simpler to represent

or manipulate vectors in a particular basis. But once you’ve specified a

basis, a vector may be represented simply by writing its components in

that basis as an ordered set of numbers.

For example, you could choose to represent a three-dimensional vector

by writing its components into a single-column matrix

~A =

AxAy
Az

 ,
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as long as you remember that vectors may be represented in this way

only when the basis system has been specified.

Since they’re vectors, the Cartesian basis vectors (̂ı, ̂, and k̂) them-

selves can be written as column vectors. To do so, it’s necessary to ask

“In what basis?” Students sometimes find this a strange question, since

we’re talking about representing a basis vector, so isn’t the basis obvi-

ous?

The answer is that it’s perfectly possible to expand any vector, includ-

ing a basis vector, using whichever basis system you choose. But some

choices will lead to simpler representation than others, as you can see

by representing ı̂, ̂, and k̂ using their own Cartesian basis system:

ı̂ = 1ı̂+ 0̂+ 0k̂ =

1

0

0

 ̂ = 0ı̂+ 1̂+ 0k̂ =

0

1

0


and

k̂ = 0ı̂+ 0̂+ 1k̂ =

0

0

1

 .

Such a basis system, in which each basis vector has only one non-zero

component, and the value of that component is +1, is called the “stan-

dard” or “natural” basis.

Here’s what it looks like if you express the Cartesian basis vectors

(̂ı, ̂, k̂) using the basis vectors (r̂, θ̂, φ̂) of the spherical coordinate system

ı̂ = sin θ cosφr̂ + cos θ cosφθ̂ − sinφφ̂

̂ = sin θ sinφr̂ + cos θ sinφθ̂ + cosφφ̂

k̂ = cos θr̂ − sin θθ̂.

So the column-vector representation of ı̂, ̂, k̂ in the spherical basis system

is

ı̂ =

sin θ cosφ

cos θ cosφ

− sinφ

 ̂ =

sin θ sinφ

cos θ sinφ

cosφ

 k̂ =

 cos θ

− sin θ

0

 .

The bottom line is this: whenever you see a vector represented as a col-

umn of components, it’s essential that you understand the basis system

to which those components pertain.

When you’re dealing with functions as abstract vectors, you’re likely
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to encounter entities called “ket vectors” or simply “kets”, written with

a vertical bar on the left and angled bracket on the right, such as |A〉.
The ket |A〉 can be expanded in the same way as vector ~A:

|A〉 = Ax |i〉+Ay |j〉+Az |k〉 =

AxAy
Az

 = Axî+Ay ĵ+Az k̂ = ~A. (1.11)

So if kets are just a different way of representing vectors, why call them

“kets” and write them as column vectors? This notation was developed

by the British physicist Paul Dirac in 1939, while he was working with a

generalized version of the dot product called the inner product, written

as 〈A|B〉. In this context, “generalized” means “not restricted to real

vectors in three-dimensional physical space”, so the inner product can

be used with higher-dimensional abstract vectors with complex compo-

nents, as you’ll see in Sections 1.3 and 1.4. Dirac realized that the inner

product bracket 〈A|B〉 could be conceptually divided into two pieces,

a left half (which he called a “bra”) and a right half (which he called

a “ket”). In conventional notation, an inner product between vectors ~A

and ~B might be written as ~A ◦ ~B or ( ~A, ~B), but in Dirac notation the

inner product is written as

Inner product of |A〉 and |B〉 = 〈A| times |B〉 = 〈A|B〉 . (1.12)

Notice that in forming the bracket 〈A|B〉 as the multiplication of bra

〈A| by ket |B〉, the right vertical bar of 〈A| and the left vertical bar of

|B〉 are combined into a single vertical bar.

To calculate the inner product 〈A|B〉, begin by representing vector ~A

as a ket:

|A〉 =

AxAy
Az

 (1.13)

in which the subscripts indicate that these components pertain to the

Cartesian basis system. Now form the bra 〈A| by taking the complex

conjugate3 of each component and writing them as a row vector:

〈A| =
(
A∗x A

∗
y A
∗
z

)
. (1.14)

3 The reason for taking the complex conjugate is explained in Section 1.4, where
you’ll also find a refresher on complex quantities.
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The inner product 〈A|B〉 is thus

〈A| times |B〉 = 〈A|B〉 = (A∗x A
∗
y A
∗
z)

BxBy
Bz

 . (1.15)

By the rules of matrix multiplication this gives

〈A|B〉 = (A∗x A
∗
y A
∗
z)

BxBy
Bz

 = A∗xBx +A∗yBy +A∗zBz (1.16)

as you’d expect for a generalized version of the dot product.

So kets can be represented by column vectors, and bras can be rep-

resented by row vectors, but a common question among students new

to Dirac notation is “What exactly are kets, and what are bras?” The

answer to the first question is that kets are mathematical objects that

are members of a “vector space” (also called a “linear space”). If you’ve

studied any linear algebra, you’ve already encountered the concept of

a vector space, and you may remember that a vector space is just a

collection of vectors that behave according to certain rules. Those rules

include the addition of vectors to produce new vectors (which live in the

same space), and multiplying a vector by a scalar, producing a scaled

version of the vector (which also lives in that space).

Since we’ll be dealing with generalized vectors rather than vectors

in three-dimensional physical space, instead of labeling the components

x, y, z, we’ll number them. And instead of using the Cartesian unit vec-

tors ı̂, ̂, k̂, we’ll use the basis vectors ~ε1,~ε2 . . .~εN . So the equation

|A〉 = Ax |i〉+Ay |j〉+Az |k〉 (1.17)

becomes

|A〉 = A1 |ε1〉+A2 |ε2〉+ . . . AN |εN 〉 =

N∑
i=1

Ai |εi〉 (1.18)

in which Ai represents the ket component for the basis ket |εi〉.
But just as the vector ~A is the same vector no matter which coordinate

system you use to express its components, the ket |A〉 exists indepen-

dently of any particular set of basis kets (kets are said to be “basis

independent”.) So ket |A〉 behaves just like vector ~A.
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It may help you to think of a ket like this:

 Label

Name of the vector to which
this ket corresponds

Tells you that this object
behaves like a vector

>

Once you’ve picked a basis system, why write the components of a ket

as a column vector? One good reason is that it allows the rules of matrix

multiplication to be applied to form scalar products, as in Eq. 1.16.

The other members of those scalar products are bras, and the defini-

tion of a bra is somewhat different from that of a ket. That’s because

a bra is a “linear functional” (also called a “covector” or a “one-form”)

that combines with a ket to produce a scalar; mathematicians say bras

“map vectors to the field of scalars”.

So what’s a linear functional? It’s essentially a mathematical device

(some authors refer to it as an instruction) that operates on another

object. Hence a bra operates on a ket, and the result of that operation

is a scalar. How does this operation map to a scalar? By following the

rules of the scalar product, which you’ve already seen for the dot product

between two real vectors. In Section 1.4 you’ll learn the rules for taking

the inner product between two complex abstract vectors.

Bras don’t inhabit the same vector space as kets — they live in their

own vector space that’s called the “dual space” to the space of kets.

Within that space, bras can be added together and multiplied by scalars

to produce new bras, just as kets can in their space.

One reason that the space of bras is called “dual” to the space of kets

is that for every ket there exists a corresponding bra, and when a bra

operates on its corresponding (dual) ket, the scalar result is the square

of the norm of the ket:

〈A|A〉 =
(
A∗1 A∗2 . . . A∗N

)

A1

A2

...

AN

 = | ~A|2,
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just as the dot product of a (real) vector with itself gives the square of

the vector’s length (Eq. 1.9).

Note that the bra that is the dual of ket |A〉 is written as 〈A|, not

〈A∗|. That’s because the symbol inside the brackets of a ket or a bra is

simply a name. For a ket, that name is the name of the vector that the

ket represents. But for a bra, the name inside the brackets is the name

of the ket to which the bra corresponds. So the bra 〈A| corresponds to

the ket |A〉, but the components of bra 〈A| are the complex conjugates

of the components of |A〉.
You may want to think of a bra like this:

< Label

Name of the vector (ket) to
which this bra corresponds

Tells you that this is a device for
turning a vector (ket) into a scalar

1.3 Abstract Vectors and Functions

To understand the use of bras and kets, it’s necessary to generalize the

concepts of vector components and basis vectors to functions. I think the

best way to do that is to change the way you graph vectors. Instead of

attempting to replicate three-dimensional physical space as in Fig. 1.4a,

simply line up the vector components along the horizontal axis of a two-

dimensional graph, with the vertical axis representing the amplitude of

the components, as in Fig. 1.4b.

At first glance, a two-dimensional graph of vector components may

seem less useful than a three-dimensional graph, but its value becomes

clear when you consider spaces with more than three dimensions.

And why would you want to do that? Because higher-dimensional

abstract spaces turn out to be very useful tools for solving problems

in several areas of physics, including classical and quantum mechanics.

These spaces are called “abstract” because they’re non-physical — that

is, their dimensions don’t represent the physical dimensions of the uni-

verse we inhabit. For example, an abstract space might consist of all
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Figure 1.4 Vector components graphed in 3-D and 2-D.

of the values of the parameters of a mathematical model, or all of the

possible configurations of a system. So the axes could represent speed,

momentum, acceleration, energy, or any other parameter of interest.

Now imagine drawing a set of axes in an abstract space and marking

each axis with the values of a parameter. That makes each parameter

a “generalized coordinate”; “generalized” because these are not spatial

coordinates (such as x, y, and z), but a “coordinate” nonetheless because

each location on the axis represents a position in the abstract space. So

if speed is used as a generalized coordinate, an axis might represent the

range of speeds from zero to 20 meters per second, and the “distance”

between two points on that axis is simply the difference between the

speeds at those two points.

Physicists sometimes refer to “length” and “direction” in an abstract

space, but you should remember that in such cases “length” is not a

physical distance, but rather the difference in coordinate values at two

locations. And “direction” is not a spatial direction, it’s an angle relative

to an axis along which a parameter changes.

The multi-dimensional space most useful in several areas of physics

is an abstract vector space called “Hilbert space”, after the German

mathematician David Hilbert.

To understand the characteristics of Hilbert space, recall that vector

spaces are collections of vectors that behave according to certain rules,

such as vector addition and scalar multiplication. In addition to those

rules, an “inner product space” also includes rules for multiplying two
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Figure 1.5 Vector components of an N-dimensional vector.

vectors together (the generalized scalar product). But an issue arises

when forming the inner product between two higher-dimensional vectors,

and to understand that issue, consider the graph of the components of

an N-dimensional vector shown in Fig. 1.5.

Just as each of the three components (Ax, Ay, and Az) pertains to a

basis vector (̂ı, ̂, and k̂), each of the N components in Fig. 1.5 pertains

to a basis vector in the N-dimensional abstract vector space inhabited

by the vector.

Now imagine how such a graph would appear for a vector with an even

larger number of components. The more components that you display

on your graph for a given range, the closer together those components

will appear along the horizontal axis, as shown in Fig. 1.6. If you’re

dealing with a vector with an extremely large number of components,

the components may be treated as a continuous function rather than a

set of discrete values. That function (call it “f”) is depicted as the curvy

line connecting the tips of the vector components in Fig. 1.6. As you can

see, the horizontal axis is labeled with a continuous variable (call it “x”),

which means that the amplitudes of the components are represented by

the continuous function f(x)4.

So the continuous function f(x) is composed of a series of amplitudes,

with each amplitude pertaining to a different value of the continuous

4 We’re dealing with functions of a single variable called x, but the same concepts
apply to functions of multiple variables.
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Figure 1.6 Relationship between vector components and continuous
function.

variable x. And a vector is composed of a series of component amplitudes,

with each component pertaining to a different basis vector.

In light of this parallel between a continuous function such as f(x)

and the components of a vector such as ~A, it’s probably not surprising

that the rules for addition and scalar multiplication apply to functions

as well as vectors. So two functions f(x) and g(x) add to produce a

new function, and that addition is done by adding the value of f(x) to

the value of g(x) at every x (just as the addition of two vectors is done

by adding corresponding components for each basis vector). Likewise,

multiplying a function by a scalar results in a new function which has a

value at every x of the original function f(x) times the scalar multiplier

(just as multiplying a vector by a scalar produces a new vector with each

component amplitude multiplied by the scalar).

But what about the inner product? Is there an equivalent process for

continuous functions? Yes, there is. Since you know that for vectors the

dot product in an orthonormal system can be found by summing the

products of corresponding components in a given basis (such as AxBx+

AyBy + AzBz), a reasonable guess is that the equivalent operation for

continuous functions such as f(x) and g(x) involves multiplication of the

functions followed by integration rather than discrete summation. That

works — the inner product between two functions f(x) and g(x) (which,
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like vectors, may be represented by kets) is found by integrating their

product over x:

(f(x), g(x)) = 〈f(x)|g(x)〉 =

∫ ∞
−∞

f∗(x)g(x)dx. (1.19)

in which the asterisk after the function f(x) in the integral represents

the complex conjugate, as in Eq. 1.16. The reason for taking the complex

conjugate is explained in the next section.

And what’s the significance of the inner product between two func-

tions? Recall that the dot product between two vectors uses the projec-

tion of one vector onto the direction of the other to tell you how much one

vector “lies along” the direction of the other. Similarly, the inner prod-

uct between two functions uses the “projection” of one function onto the

other to tell you how much of one function “lies along” the other (or,

if you prefer, how much one function gets you in the “direction” of the

other function)5.

Obeying the rules for addition, scalar multiplication, and the inner

product means that functions like f(x) can behave like vectors — they

are not members of the vector space of three-dimensional physical vec-

tors, but they are members of their own abstract vector space.

There is, however, one more condition that must be satisfied before

we can call that vector space a Hilbert space. That condition is that the

functions must have a finite norm:

|f(x)|2 = 〈f(x)|f(x)〉 =

∫ ∞
−∞

f∗(x)f(x)dx <∞. (1.20)

In other words, the integral of the square of every function in this space

must converge to a finite value. Such functions are said to be “square

summable” or “square integrable”.

1.4 Complex Numbers, Vectors, and Functions

The motivation for the sequence of Figures 1.4, 1.5, and 1.6 is to help

you understand the relationship between vectors and functions, and that

understanding is helpful in several areas of physics and engineering. In

some applications, the relevant functions and equations are complex –

5 The concept of the “direction” of a function may make more sense after you’ve
read about orthogonal functions in Section 1.5.
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that is, they include the imaginary unit “i” (the square root of minus

one).6. So this section contains a short review of complex numbers and

their use in the context of vector components and Dirac notation.

As mentioned in the previous section, the process of taking an inner

product between vectors or functions is slightly different for complex

quantities. How can a vector be complex? By having complex compo-

nents. To see why that has an effect on the inner product, consider

the length of a vector with complex components. Remember, complex

quantities can be purely real, purely imaginary, or a mixture of real

and imaginary parts. So the most general way of representing a complex

quantity z is

z = x+ iy (1.21)

in which x is the real part of z and y is the imaginary part of z (be sure

not to confuse the imaginary unit i =
√
−1 in this equation with the ı̂

unit vector — you can always tell the difference by noting the caret hat

on the unit vector ı̂).

One important difference between real and imaginary numbers is that

they lie along different number lines. The number line for imaginary

numbers is perpendicular to the real number line, and a two-dimensional

plot of both number lines represents the “complex plane” shown in Fig.

1.7.

As you can see from this figure, knowing the real and imaginary parts

of a complex number allows you to find the magnitude or norm of that

number. The magnitude of a complex number is the distance between

the point representing the complex number and the origin in the complex

plane, and you can find that distance using the Pythagorean theorem

|z|2 = x2 + y2. (1.22)

But if you try to square the complex number z by multiplying by itself,

you find

z2 = z × z = (x+ iy)× (x+ iy) = x2 + 2ixy − y2 (1.23)

which is a complex number, and which may be negative. But a distance

should be a real and positive number, so this is clearly not the way to

find the distance of z from the origin.

6 Mathematicians say that complex functions are members of an abstract linear
vector space “over the field of complex numbers”. That means that the
components may be complex, and that the rules for scaling a function by
multiplying by a scalar apply not only to real scalars, but complex numbers as
well.
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z=x+iy

θ

Imaginary
Number Line

Real
Number Line

y

x

z

To get from the real
number line to the
imaginary number
line, multiply by i = √-1

Figure 1.7 Complex number z=x+iy in the complex plane.

To correctly find the magnitude of a complex quantity, it’s necessary

to multiply the quantity not by itself, but by its complex conjugate. To

take the complex conjugate of a complex number, just change the sign

of the imaginary part of the number. The complex conjugate is usually

indicated by an asterisk, so for the complex quantity z = x + iy, the

complex conjugate is

z∗ = x− iy. (1.24)

Multiplying by the complex conjugate ensures that the magnitude of a

complex number will be real and positive (as long as the real and the

imaginary parts are not both zero). You can see that by writing out the

terms of the multiplication:

|z|2 = z×z∗ = (x+ iy)×(x− iy) = x2−xiy+ iyx+y2 = x2 +y2 (1.25)

as expected. And since the magnitude (or norm) of a vector ~A can be

found by taking the square root of the inner product of the vector with

itself, the complex conjugate is built into the process of taking the inner

product between complex quantities:

|A| =
√
~A ◦ ~A =

√
A∗xAx +A∗yAy +A∗zAz =

√√√√ N∑
i=1

A∗iAi. (1.26)
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This also applies to complex functions:

|f(x)| =
√
〈f(x)|f(x)〉 =

√∫ ∞
−∞

f∗(x)f(x)dx. (1.27)

So it’s necessary to use the complex conjugate to find the norm of a

complex vector or function. If the inner product involves two different

vectors or functions, by convention the complex conjugate is taken of

the first member of the pair:

~A ◦ ~B =

N∑
i=1

A∗iBi

〈f(x)|g(x)〉 =

∫ ∞
−∞

f∗(x)g(x)dx.

(1.28)

This is the reason for the complex conjugation in the earlier discussion

of the inner product using bras and kets (Eqs. 1.16 and 1.19).

The requirement to take the complex conjugate of one member of the

inner product for complex vectors and functions means that the order

matters, so ~A ◦ ~B is not the same as ~B ◦ ~A. That’s because

~A ◦ ~B =

N∑
i=1

A∗iBi =

N∑
i=1

(AiB
∗
i )
∗

=

N∑
i=1

(B∗i Ai)
∗ = ( ~B ◦ ~A)∗

〈f(x)|g(x)〉 =

∫ ∞
−∞

f∗(x)g(x)dx =

∫ ∞
−∞

[g∗(x)f(x)]∗dx = (〈g(x)|f(x)〉)∗.

(1.29)

So reversing the order of the complex vectors or functions in an inner

product produces a result that is the complex conjugate of the inner

product without switching.

The convention of applying the complex conjugate to the first member

of the inner product is common but not universal in physics texts, so

you should be aware that you may find some texts and on-line resources

that apply the complex conjugate to the second member.

1.5 Orthogonal Functions

For vectors, the concept of orthogonality is straightforward: two vectors

are orthogonal if their scalar product is zero, which means that the

projection of one of the vectors onto the direction of the other has zero
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length. Simply put, orthogonal vectors lie along perpendicular lines, as

shown in Fig. 1.8a for the two-dimensional vectors ~A and ~B (which we’ll

take as real for simplicity).

x
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(a) (b)
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Figure 1.8 Components of perpendicular vectors.

Now consider the plots of the Cartesian components of vectors ~A and
~B in Fig. 1.8b. You can learn something about the relationship between

these components by writing out the scalar product of ~A and ~B:

~A ◦ ~B = AxBx +AyBy = 0

AxBx = −AyBy
Ax
Ay

= −By
Bx

.

This can only be true if one (and only one) of the components of ~A

has the opposite sign of the corresponding component of ~B. In this case,

since ~A points up and to the right (that is, Ax and Ay are both positive),

to be perpendicular, ~B must point either up and to the left (with Bx
negative and By positive, as shown in Fig. 1.8a), or down and to the

right (with Bx positive and By negative). Additionally, since the angle
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between the x- and y-axes is 90◦, if ~A and ~B are perpendicular, the

angle between ~A and the positive x-axis (shown as θ in Fig. 1.8a) must

be the same as the angle between ~B and the positive y-axis (or negative

y-axis had we taken the “down and to the right” option for ~B). For those

angles to be the same, the ratio of ~A’s components (Ax/Ay) must have

the same magnitude as the inverse ratio of ~B’s components (By/Bx).

You can get an idea of this inverse ratio in Fig. 1.8b.

Component
Amplitude

Component
Number

Component
Number

Component
Amplitude

1 2 3 N̈̈

̈̈ N

1 23

f(x)

g(x)

x

x

(a) (b)

+ +

+

- -

-

B

A

+
-

2p

2p

Figure 1.9 Orthogonal N-dimensional vectors (a) and functions (b).

Similar considerations apply to N-dimensional abstract vectors as well

as continuous functions, as shown in Fig. 1.9a and b. If the N-dimensional

abstract vectors ~A and ~B in Fig. 1.9a (again taken as real) are orthog-

onal, then their inner product ( ~A, ~B) must equal zero:

( ~A, ~B) =

N∑
i=1

A∗iBi = A1B1 +A2B2 + ...+ANBN = 0.

For this sum to be zero, it must be true that some of the component

products have opposite signs of others, and the total of all the negative

products must equal the total of all the positive products. In the case of
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the two N-dimensional vectors shown in Fig.1.9a, the components in the

left half of ~B have the same sign as the corresponding components of
~A, so the products of those left-half components (AiBi) are all positive.

But the components in the right half of ~B have the opposite sign of the

corresponding components in ~A, so those products are all negative.

Since the magnitudes of these two vectors are symmetric about their

midpoints, the magnitude of the sum of the left-half products equals the

magnitude of the sum of the right-half products. With equal magnitudes

and opposite signs, the sum of the products of the components from the

left half and the right half is zero.

So although ~A and ~B are abstract vectors with “directions” only

with respect to generalized rather than spatial coordinates, these two

N-dimensional vectors satisfy the requirements of orthogonality, just as

the two spatial vectors did in Fig. 1.8. Stated another way, even though

we have no way of drawing the N dimensions of these vectors in dif-

ferent physical directions in our three-dimensional space, the zero inner

product of ~A and ~B means that the projection of vector ~A onto vector
~B (and of ~B onto ~A) has zero “length” in their N-dimensional vector

space.

By this point, you’ve probably realized how orthogonality applies to

functions such as f(x) and g(x) shown in Fig. 1.9b. Since these functions

(also taken as real for simplicity) are continuous, the inner-product sum

becomes an integral, as described in the previous section of this chapter.

For these functions, the statement of orthogonality is

(f(x), g(x)) = 〈f(x)|g(x)〉 =

∫ ∞
−∞

f∗(x)g(x)dx =

∫ ∞
−∞

f(x)g(x)dx = 0.

Just as in the case of discrete vectors ~A and ~B, the product f(x)g(x)

can be thought of as multiplying the value of the function f(x) by the

value of the function g(x) at each value of x. Integrating this product

over x is the equivalent of finding the area under the curve formed by

the product f(x)g(x).

In the case of the functions f(x) and g(x) in Fig. 1.9b, you can estimate

the result of multiplying the two functions and integrating (continuously

summing) the result. To do that, notice that for the first one-third of

the range of x shown on the graph (left of the first dashed vertical line),

f(x) and g(x) have the same sign (both positive). For the next one-sixth

of the graph (between the first and second dashed vertical lines), the

two functions have opposite signs (f(x) negative and g(x) positive). For

the next one-sixth of the graph (between the second and third dashed
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vertical lines), the signs of f(x) and g(x) are again the same (both

negative), and for the final one-third of the graph (right of the third

dashed vertical line), the signs are opposite. Due to the symmetry of

the regions in which the product f(x)g(x) is positive and negative, the

total sum is zero, and these two functions qualify as orthogonal over

this range of x. So these two functions are orthogonal in this region in

exactly the same way as vectors ~A and ~B are orthogonal.

If you prefer a more mathematical approach to determining the or-

thogonality of these functions, notice that g(x) is the sinx function over

the range of x = 0 to 2π and that f(x) is the sin 3
2x function over the

same range. The inner product of these two functions is

〈f(x)|g(x)〉 =

∫ ∞
−∞

f∗(x)g(x)dx =

∫ 2π

0

sin

(
3

2
x

)
sin(x)dx

=

[
sin

x

2
− 1

5
sin

5x

2

]∣∣∣∣2π
0

= 0,

which is consistent with the result obtained by estimating the area under

the curve of the product f(x)g(x).

Orthogonal functions play an important role in Fourier and Laplace

transforms, as described in Chapter 1 of A Student’s Guide to Laplace

Transforms.




