Review of Coordinate Systems

A good understanding of coordinate systems can be very helpful in solving problems
related to Maxwell’s Equations. The three most common coordinate systems are
rectangular (x, y, z), cylindrical (r, ¢, z), and spherical (r, 8, ¢).

Unit vectors in rectangular, cylindrical, and spherical coordinates

In rectangular coordinates a point P is specified by x,
y, and z, where these values are all measured from the P e 21 >
origin (see figure at right). A vector at the point P is
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components with unit vectors Ij and k (also called i constant y
%,V,and 2). The unit vectors i, j, andk form a right- -

handed set; that is, if you push iintoj with your right

hand, your right thumb will point along k direction. o a
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In cylindrical coordinates a point P is specified by
r,¢,z, where ¢ is measured from the x axis (or x-z
plane) (see figure at right). A vector at the point P P(.4,2) inderof
is specified in terms of three mutually perpendicular constant ¢
components with unit vectors f perpendicular to
the cylinder of radius r, ¢ perpendicular to the
plane through the z axis at angle ¢, and 2
perpendicular to the x-y plane at distance z. The & y
unit vectors £, ¢, 2 form a right-handed set. ¢
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In spherical coordinates a point P is specified by
r, 0, ¢, where ris measured from the origin, @ is

measured from the z axis, and ¢ is measured from

the x axis (or x-z plane) (see figure at right). With Cone of
z axis up, @ is sometimes called the zenith angle constant 4
and ¢ the azimuth angle. A vector at the point P

is specified in terms of three mutually
perpendicular components with unit vectors
perpendicular to the sphere of radius r, 0
perpendicular to the cone of angle 4, and ¢
perpendicular to the plane through the z axis at

angle ¢. The unit vectors f, 0, ¢ form a right-

handed set.

Infinitesimal lengths and volumes

An infinitesimal length in the rectangular system is given by

dL = ,/dx?+dy?+ dz?

and an infinitesimal volume by

dv =dxdydz

In the cylindrical system the corresponding quantities are

dL = Jdr2+r?dg? + dz?
and dv =drrdg¢dz

In the spherical system we have

dL = /dr2+r2d6?+ rsin?@ dg’

and dv=drrdé@ rsinddg
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Direction cosines and coordinate-system transformation

As shown in the figure on the right, the Za
projection x of the scalar distance r on the x axis
is given by rcosa where « isthe angle
between r and the x axis. The projection of ron
the y axis is given by rcos /g, and the

projection on the z axis by rcosy. Note that by
y =6 S0 CoSy=CoSf. §
Y /r
The quantities cos «, cos g, and cos y are
called the direction cosines. From the theorem B
of Pythagoras, a R
s rcos f g
cos® a +cos” f+cos’y =1 (7) <
The scalar distance r of a spherical coordinate 'x/
system transforms into rectangular coordinate
distance
X = rcosa = rsinécosg¢ (8)
y=rcosf =rsingsing 9)
Z=rcosy =rcosé (10)
from which
COS @ = Sin @ cos ¢ (11)
cos f=sin@sing direction cosines (12)
COS ¥ = c0S 0 (13)

As the converse of (8), (9), and (10), the spherical coordinate values (r, 8, ¢) may be
expressed in terms of rectangular coordinate distances as follows:

r=qx*+y?+z° r>0 (14)

X2 +yi+z
¢=tanl% (16)

From these and similar coordinate transformations of spherical to rectangular and
rectangular to spherical coordinates, we may express a vector A at some point P with
spherical components A, , A,, A, as the rectangular components A,, A ,and A, , where



A, =A sing cosg+ A, cosd cosg—A, sing
A, =A sin@ sing+ A, cosO sing+ A, cos ¢

A, =A cosf—-A,sind

(17)
(18)
(19)

Note that the direction cosines are simply the dot products of the spherical unit vector
with the rectangular unit vectors X, y,and z :
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= sin @ cos ¢=Ccos o
= sin@sing=cos 8
= cos@=cosY

(20)
(21)
(22)

These and other dot product combinations are listed in the following table:

Rectangular Cylindrical Spherical

R y 2 s ¢ 2 P 0 ¢
5| X 1 0 CoS ¢ —sing 0 sinfdcos¢g cos@dcosg —sing
% y 0 1 0 sing CoS ¢ 0 sin@dsing cosdsing  cos¢
& 2 0 0 1 0 0 1 cosd —-sin @ 0
3 P cos ¢ sing 0 1 0 0 sin @ cosd 0
S|¢ -sing CoS ¢ 0 0 1 0 0 0 1
9 2 0 0 1 0 0 1 cosd —-sin @ 0
| F singdcosg  sindsing cosd sin @ 0 cosd 1 0 0
é 0 cos@dcos¢g  cos@sing —sin @ cosé 0 —sin @ 0 1 0
” ) —sing CoS ¢ 0 0 1 0 0 0 1

Note that the unit vectors f in the cylindrical and spherical systems are not the same.

For example,
Spherical
f-X = sindcos¢
f-y =sindsing
f-2 =cosé

Cylindrical
F-X = cos¢
F-y =sing
fr-2=0



In addition to rectangular, cylindrical, and spherical coordinate systems, there are many
other systems such as the elliptical, spheroidal (both prolate and oblate), and paraboloidal
systems. Although the number of possible systems is infinite, all of them can be treated
in terms of a generalized curvilinear coordinate system.

The fundamental parameters of the rectangular, cylindrical, and spherical coordinate

systems are summarized in the following table:

Coordinate . Unit Length Coordinate
system Coordinates  Range vectors elements surfaces
X —oto+o  gori dx Plane  x=constant
Rectangular y —oto+0  yorj dy Plane  y=constant
z —oto+o  jork dz Plane  z=constant
r 0to oo r dr Cylinder r=constant
Cylindrical @ Oto2r [0} rdg  Plane ¢ =constant
z —ot0+00 4 dz Plane  z=constant
r 0to P dr Sphere  r=constant
Spherical 0 Otor 0 rdo Cone  #=constant
@ Oto2r ¢ rsindd¢ Plane ¢ =constant

The following two tables give the unit vector dot products in rectangular coordinates for
both rectangular-cylindrical and rectangular-spherical coordinates.

A

X y 2
. X y
A
. —Y X
o \/x2+y2 \/x2+y2 0
5 0 0 1

Rectangular-cylindrical product in rectangular coordinates

Example: ¢ -y =cos¢ =

X2 +y

2



X y Z

-~

X y z
X+ Y2+ 72 X+ Y2+ 72 X+ yi+ 72
XZ z

0 y ’x2+y2
2 2 2 2 2 2 2 2 2 2 B
\/x +y\/x +y +z \/x +y\/x +y +z /X2+y2+22
¢ y X

Rectangular-spherical product in rectangular coordinates

X
X +y2+ 72

Here are the transformations of vector components between coordinate systems:

Example: X-f =sin@ cos¢ =

Rectangular to cylindrical Cylindrical to rectanqular
= = Y A=A A, si
A’"_Ax\xW—I_A}'W x =4, cosp—A,sing

y X _ )
A, =-A + Ay=Arsin g + A,C0S ¢
¢ /X2 N yz AV /X2 4 yz
A=A A=A

Rectangular to spherical
X y Z
A=A + + A
\/x2+y2+22 Ay\/x2+y2+z2 \/x2+y2+zz

Xz A yz A VXE+y°
\/x2+y2\/x2+y2+22 \/x2+y2\/x2+y2+22 \/m

Yy X
A =-—
% A(\/X2+y2+Ay\/X2+y2

Spherical to rectangular

A=A

A = Assindcosg + A, cosdcosg — A,sing
A, = Asingsing + A,cosdsing + A, cos ¢
A, = A cosd— A;sing



And here are expressions for the gradient, divergence, and curl in all three coordinate

systems:

Rectanqular coordinates

Vf:>ﬂ<ﬂ+§/ﬂ+2i
OX oy oz
VoA=aA‘+&A\yJraAZ
oXx oy oz
0 0
VxA=X %_i +§/(a&—aAzj+2 Ay—aA‘
oy oz oz  0oX ox oy

Cylindrical coordinates

Jof L 1of .of
Vi =Ff—+¢——+2—
or rog oz

oA
V.A:EErA +E_¢+%
ror r op oz

rlor 7

VxA= f{laAz —8A¢]+(i)(aA' —6A2j+21(£rA _oA

r ogp oz oz or

Spherical coordinates

Vf:f’q+élﬁ+ﬁ) 1 a
or r oo rsin@ o¢
oA
vea=2lra O (asing+—— 2
reor rsing 06 rsing o¢

VxA=f (%(A¢sine)—%J+él(L%—ﬁr
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