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Matrix Algebra Review

Introduction

This is the matrix review for A Student’s Guide to Vectors and Tensors

(SGVT). It is not meant to be a thorough introduction to the theory and

practice of matrix algebra, but rather a review of the matrix concepts

you should understand when learning about vectors and tensors.

A matrix is defined as an array of numbers. Some authors restrict the

term “matrix” to refer only to square arrays of real numbers, but in com-

mon usage a matrix is a rectangular (m x n) array of complex numbers

or “elements,” where “m” represents the number of rows, “n” represents

the number of columns, and “complex” means that the numbers may be

purely real, purely imaginary, or mixed. Thus

A =

[
3 −2

1 0

]
B =


8

0

−2

1

5

 C =
[

9 15 3 −8 12 −2
]

and

D =


5− 2i 3i

0 15

−4i 2 + 8i

12 i− 1

 E =

 1 0 0

0 1 0

0 0 1

 F =

[
0 0

0 0

]

are all matrices. In these examples, matrix A has “dimensions” or “or-

der” (rows x columns) of 2x2, B of 5x1, C of 1x6, D of 4x2, E of 3x3,

and F of 2x2.
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If both m and n for a matrix are equal to one, that matrix is called

a scalar (because it’s just a single value), and if either (but not both)

of m and n are one, that matrix may be called a vector. So in the

examples shown above, B and C are vectors; in some texts you’ll see

B called a column vector and C called a row vector. A square matrix

(that is, a matrix with m=n) with ones on the diagonal and zeroes in

all off-diagonal elements (such as matrix E above) is called the “unit”

or “identity” matrix, and a matrix with all elements equal to zero (such

as matrix F above) is called the “null” or “zero” matrix.

Two matrices are said to be equal only if they have the same number

of rows as well as the same number of columns and if every element in

one matrix is equal in value to the corresponding element in the other

matrix. Matrices are usually denoted using uppercase letters or bold font,

often surrounded by square brackets (such as [A]), and the elements are

often written using lowercase letters with subscripts. So you may see the

elements of matrix [A] written as aij, although some authors use Aij or

[A]ij to refer to the elements of A (but be careful to note that Aij may

also refer to the “Matrix of Cofactors” of matrix A, which you can read

about in Section E of this document).

So does terminology such as “row vector” mean that matrices, vectors,

and tensors are the same thing? Not really. It’s certainly true that the

vectors and tensors in SGVT are often represented using matrices, but

it’s important to remember what those matrices stand for. Those arrays

of values represent the components of vectors and tensors, and those

components have meaning only when associated with the basis vectors

of a particular coordinate system. Since the basis vectors are not always

shown, it’s convenient to think of the matrix as representing the vector

or tensor itself, and that’s fine as long as you remember that the actual

vector or tensor has existence independent of any coordinate system.

A) Matrix addition, multiplication by a scalar, and subtraction

Matrices may be added only if both the row dimension (m) and their

column dimension (n) are equal (such matrices are said to be “of the

same order”). The addition is accomplished simply by adding each el-

ement of one matrix to the corresponding element of the other matrix.

For example: [
5 2

−3 0

]
+

[
−3 1

0 4

]
=

[
2 3

−3 4

]
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or in general[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
.

Note that the result is a matrix of the same order as the matrices being

added. Note also that matrix addition is commutative, so [A]+[B]=[B]+[A].

Multiplication of a matrix by a scalar is straightforward; you simply

multiply each element of the matrix by the scalar. Thus

3A = 3

[
3 −2

1 0

]
=

[
9 −6

3 0

]
and generally

kA = k

[
a11 a12
a21 a22

]
=

[
ka11 ka12
ka21 ka22

]
You can use the rules for addition of matrices and scalar multiplication

to see that subtraction of matrices is accomplished simply by subtracting

the corresponding elements. Thus [A]-[B]=[A]+(-1)[B]. So if

A =

[
a11 a12
a21 a22

]
and

B =

[
b11 b12
b21 b22

]
then

A−B =

[
a11 + (−1)b11 a12 + (−1)b12
a21 + (−1)b21 a22 + (−1)b22

]
=

[
a11 − b11 a12 − b12
a21 − b21 a22 − b22

]
.

Just as for addition, subtraction of matrices only works for matrices of

the same order.

B) Matrix multiplication

There are several different ways to multiply matrices; the most common

and most relevant to the vector and tensor concepts in SGVT is to

multiply two matrices (call them A and B) by multiplying the elements

of each row in A by the elements of each column of B and then summing

the results. So if matrix A is given by[
a11 a12 a13
a21 a22 a23

]
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and matrix B is given by  b11 b12 b13
b21 b22 b23
b31 b32 b33


then the product A times B is given by

[
a11 a12 a13
a21 a22 a23

]
×

 b11 b12 b13
b21 b22 b23
b31 b32 b33



=

[
a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33

]
.

This result is achieved by multiplying the elements of the first row of

A by the elements of the first column of B, summing the results, and

placing the sum in the first row and first column of the result matrix,

as shown in Figure 1.1.

a
11

    a
12

    a
13

(  )    (  )     (  )

b
11

    (  )     (  )

b
21

    (  )     (  )
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31

    (  )     (  )

a
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b
11

+ a
12

b
21

+ a
13

b
31

       (  )       (  )

              (  ) (  )       (  )x =

Multiply first row
by first column {

Sum products

Place result in first row
and first column

Figure 1.1 Multiplying first row by first column

The next step is to multiply the elements of the first row of A by the

elements of the second column of B, summing the products, and placing

the sum in the first row and second column of the result matrix, as

shown in Figure 1.2.

After multiplying the first row of A by the third column of B and placing

the sum in the first row and third column of the result matrix, the

same procedure is done with the second row of A - those elements are

multiplied by the first column of B, summed, and placed in the second
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Figure 1.2 Multiplying first row by second column
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Figure 1.3 Multiplying second row by first column

row and first column of the result matrix, as shown in Figure 1.3.

Notice that the matrix that results from multiplying a 2x3 matrix (A)

by a 3x3 matrix (B) is a 2x3 matrix - the result has the number of rows

of the first matrix and the number of columns of the second matrix. You

should also note that this type of matrix multiplication only works when

the number of columns of the first matrix (3 in the case of A) equals the

number of rows of the second matrix (also 3 in the case of B).

To understand why matrices are multiplied in this way, consider the

sorting of five types of toy marbles (Bowlers, Cat’s Eyes, Steelies, Aggies,

and Commons) into four sizes of package (Small, Medium, Large, and

Extra Large). The number of each type of marble in each size package
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is shown in the following table:

Bowlers Cat’s Eyes Steelies Aggies Commons

Small package 1 3 2 5 4

Medium package 2 5 3 7 6

Large package 5 10 5 12 10

Extra Large package 10 15 12 16 14

This array of numbers can be put into a matrix - call it “P” the package

matrix:

P =


1 3 2 5 4

2 5 3 7 6

5 10 5 12 10

10 15 12 16 14



Now imagine three containers (Cans, Boxes, and Crates) with different

numbers of packages in each type:

Small Pkgs Medium Pkgs Large Pkgs Extra-Large Pkgs

Can 10 8 5 2

Box 15 12 7 3

Crate 40 25 15 10

Put this array into a matrix called “C” the container matrix:

C =

 10 8 5 2

15 12 7 3

40 25 15 10


If you wish to find the number of each type of marble in each type of

container, you could do it like this:

Bowlers per Can = 10 small packages per can × 1 Bowler per small

package

+ 8 medium packages per can × 2 Bowlers per medium package

+ 5 large packages per can × 5 Bowlers per large package

+ 2 extra-large packages per can × 10 Bowlers per extra-large package
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= (10)(1)+(8)(2)+(5)(5)+(2)(10)=71 Bowlers per Can

Likewise, you can find the number of Cat’s Eyes per can using

Cat’s Eyes per Can=10 small packages×3 Cat’s Eyes per small package

+ 8 medium packages × 5 Cat’s Eyes per medium package

+ 5 large packages × 10 Cat’s Eyes per large package

+ 2 extra-large packages × 15 Cat’s Eyes per extra-large package

= (10)(3)+(8)(5)+(5)(10)+(2)(15)= 150 Cat’s Eyes per Can

And if you wished to find the number of Bowlers per Box, you could use

Bowlers per Box = 15 small packages × 1 Bowler per small package

+ 12 medium packages × 2 Bowlers per medium package

+ 7 large packages × 5 Bowlers per large package

+ 3 extra-large packages × 10 Bowlers per extra-large package

= (15)(1)+(12)(2)+(7)(5)+(3)(10)=104 Bowlers per Box

If you compare the numbers in these calculations to the values in the P

and C matrices, you’ll see that in each case you’re multiplying the row

elements of C by the column elements of P, which is exactly how matrix

multiplication works:

CP =

 10 8 5 2

15 12 7 3

40 25 15 10




1 3 2 5 4

2 5 3 7 6

5 10 5 12 10

10 15 12 16 14

 =

 71 150 93 198 166

104 220 137 291 244

265 545 350 715 600


So the product matrix shows you how many of each type of marble are

in each type of container:

Bowlers Cat’s Eyes Steelies Aggies Commons

Can 71 150 93 198 166

Box 104 220 137 291 244

Crate 265 545 350 715 600

In addition to showing why the rows of the first matrix are multi-

plied by the columns of the second matrix, this example also illustrates

the point made earlier: when you multiply two matrices, the number of

columns in the first matrix must equal the number of rows in the sec-
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ond matrix. So in this case, multiplication works only if you multiply C

by P, not P by C. The larger point is that matrix multiplication is not

commutative, so even if you’re able to multiply two matrices in either

order (which you can do, for example, with square matrices), the answer

is not the same. So in matrix world, AB is in general not equal to BA.

Another difference between matrix multiplication and multiplication

of numbers is that it’s possible to get zero as the result of multiplying

two matrices, even if neither matrix is zero. For example,[
2 1

0 0

]
×
[

1 0

−2 0

]
=

[
0 0

0 0

]
.

If you study vectors and tensors, you’re likely to come across the mul-

tiplication of a row vector times a column vector or vice versa, and you

should understand that such products use the same process described

above for matrix multiplication, although that may not be immediately

obvious when you look at the result. For example, multiplying a row

vector A by a column vector B gives

[
a11 a12 a13

]
×

 b11
b21
b31

 = [a11b11 + a12b21 + a13b31] .

This scalar result (essentially the dot product between A and B) comes

from multiplying the first (and only) row of A by the first (and only)

column of B and adding the sums. Likewise, if A is a column vector and

B a row vector, the product AB is a11
a21
a31

× [ b11 b12 b13
]

=

 a11b11 a11b12 a11b13
a21b11 a21b12 a21b13
a31b11 a31b12 a31b13


Once again, the same rule of matrix multiplication has been applied.

The first row of A (just a11 in this case) is multiplied by the first column

of B (just b11 in this case), and since there are no other elements in the

first row of A or the first column of B, there is nothing to add, and the

result (a11b11) is written in the first row and column of the result matrix.

Then the first row of A (again, only a11) is multiplied by the second row

of B (only b12), and the result is written in the first row, second column

of the result matrix. After doing the same for the first row of A and the

third column of B, you then multiply the second row of A (which is just

a21 in this case) by the first column of B (again just b11) and write the

result in the second row, first column of the result matrix. So although
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you get a scalar when you multiply a row vector by a column vector

(sometimes called the “inner product” of the matrices) and a matrix

when you multiply a column vector by a row vector (sometimes called

the “outer product” of the matrices), the process is exactly the same in

both cases.

Although matrix multiplication is not commutative (so AB is not nec-

essarily equal to BA), matrix multiplication is associative and distribu-

tive over addition, so for matrices A, B, and C

(AB)C = A(BC)

and

A(B + C) = AB +AC

as long as you remember not to reverse the order of any of the products.

You may be wondering if there’s ever a need to multiply each element

of one matrix by the corresponding element of an equal-size matrix.

There certainly is (for example, when applying a two-dimensional fil-

ter function to an image). This process is called “element-by-element”

or “entrywise” matrix multiplication and the result is sometimes called

the “Hadamard product.” In MATLAB, such multiplication is denoted

A.*B, where the decimal point before the multiplication symbol signifies

element-by-element multiplication.

C) Transpose and trace of a matrix

The transpose of a matrix is accomplished by interchanging the rows

with the columns of that matrix. This is usually denoted by placing the

superscript “T” after the matrix name, so the transpose of matrix A is

written as AT (MATLAB uses A′). So if the matrix A has elements

A =

[
a11 a12 a13 a14
a21 a22 a23 a24

]
then the transpose of A is given by

AT =


a11 a21
a12 a22
a13 a23
a14 a24

 .
So (Aij)

T = Aji; notice that the indices have been switched. The trans-

pose of the product of two matrices is equal to the transpose of each
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matrix multiplied in reverse order, so

(AB)T = BTAT .

so long as the dimensions of the matrices allow such products to be

formed.

For square matrices, the trace of the matrix is given by the sum of the

diagonal elements. The trace is usually denoted by “Tr” so the trace of

matrix A is written as Tr(A). So if the matrix A is given by

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


the trace of A is

Tr(A) = a11 + a22 + a33 + a44 =
∑

aii.

D) Determinant, minors, and cofactors of a matrix

The determinant of a square matrix is a scalar calculated by multiplying

and subtracting various elements of the matrix. If A is a 2x2 matrix

A =

[
a11 a12
a21 a22

]
the determinant of A (denoted using vertical bars on each side of A) is

found by cross-multiplying the upper-left element times the lower-right

element and then subtracting the product of the lower-left element times

the upper-right element:

|A| =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12.

Hence if A is

A =

[
4 −2

3 1

]
the determinant of A is

|A| =
∣∣∣∣ 4 −2

3 1

∣∣∣∣ = (4)(1)− (3)(−2) = 4− (−6) = 10.

To find the determinant of higher-order matrices, you must use the
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“minors” and “cofactors” of the determinant of the matrix. The minor

for each element of the determinant of a square matrix is found by

eliminating the entire row and the entire column in which the element

appears and then writing the remaining elements as a new determinant,

with row and column dimensions reduced by one (so the minor of each

element of a 3x3 determinant is a 2x2 determinant). So for the 3x3

determinant of matrix A

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
the minor of element a11 is∣∣∣∣∣∣

− − −
− a22 a23
− a32 a33

∣∣∣∣∣∣ =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣
obtained by eliminating the first row and column of the determinant of

matrix A (since the element for which this minor is taken (a11) is in

the first row and the first column). Likewise, the minor for element a12
is found by eliminating the row and column in which a12 appears (first

row and second column):∣∣∣∣∣∣
− − −
a21 − a23
a31 − a33

∣∣∣∣∣∣ =

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣ .
For element a22, the minor is∣∣∣∣∣∣

a11 − a13
− − −
a31 − a33

∣∣∣∣∣∣ =

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ .
Before you can use minors to find the determinant of a higher-order

matrix, you have to turn each minor into a “cofactor.” The cofactor of

an element is just the minor of that element multiplied by either +1 or

-1. To know which of these to use, just determine whether the sum of

the element’s row index and its column index is even or odd. If even (as

it is, for example, for the element in the first row and first column, since

1+1=2 which is even), the cofactor equals the minor of that element

multiplied by +1. If odd (for example, for the element in the first row

and second column, since 1+2=3 which is odd) the cofactor equals the

minor of that element multiplied by -1. So for element aij with row index
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of i and column index of j,

Cofactor of (aij) = (−1)(i+j)Minor of (aij).

So for the minors shown above, the cofactors are

Cofactor of (a11) = (−1)(1+1)

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ = (1)(a22a33 − a32a23)

Cofactor of (a12) = (−1)(1+2)

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣ = (−1)(a21a33 − a31a23)

and

Cofactor of (a22) = (−1)(2+2)

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ = (1)(a11a33 − a31a13).

With cofactors in hand, the determinant of a 3x3 matrix is straight-

forward to find. Simply pick one row or column, and multiply each of

the elements of that row or column by its cofactor and sum the results.

So, for example, if you choose to use the first row of the 3x3 matrix A,

the determinant is given by

|A| = a11(Cofactor of a11)+a12(Cofactor of a12)+a13(Cofactor of a13).

or

|A| = a11(1)(a22a33−a32a23)+a12(−1)(a21a33−a31a23)+a13(1)(a21a32−a31a22).

The value of the determinant would have been the same if you had used

a different row (or any of the columns) of matrix A, as long as you

multiply each element in your selected row or column by its cofactor

and sum the results.

The same approach can be used to find the determinant of 4x4 and

higher-order matrices; you just have to expand each of the determinants

using elements and cofactors until you get down to the 2x2 level. Of

course, the calculation becomes a bit tedious, so it’s worth your time to

learn to find determinants using a program like MATLAB.

Some useful characteristics of determinants are that the determinant

of the transpose of a matrix equals the determinant of the matrix (so

|AT | = |A|) and the determinant of the product of two matrices is the

same as the determinant of the reverse product (so |AB| = |BA|) pro-

vided that the dimensions of A and B allow both of these products to

be made.

You may also find it useful to know that if a matrix has two identical
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rows or columns, or if one row or column is an integer multiple of an-

other row or column, the determinant of that matrix must be zero.

E) Inverse of a matrix

As indicated in Section B of this document, matrix multiplication is

quite different from ordinary multiplication of numbers. One example of

this is that the product of two matrices may be the zero matrix even if

both of the matrices are non-zero (so you can’t simply divide both sides

of a matrix equation such as AB = 0 by A to get B = 0). Additionally,

the matrix equation AB = AC does not mean that matrix B equals

matrix C (so dividing both sides of this equation by A does not work

for matrices).

Differences such as this suggest that matrix division has little in com-

mon with ordinary division of numbers. About the closest you can get

to a process similar to division for matrices comes about by considering

the matrix equation

AX = B

where A, X, and B are all matrices. If you wish to find matrix X from

this equation, here’s one thing you definitely cannot do:

AX

A
=
B

A

X =
B

A

because this type of division does not work for matrices.

What you can do to find X is this: you can try to find a matrix A−1

(called the “inverse” or “reciprocal” of A) with the following property:

A−1A = I

where I represents the identity matrix (ones on the diagonal and zeroes

everywhere else). Now you can find X rather easily:

AX = B

A−1(AX) = A−1B

(A−1A)X = A−1B

IX = A−1B

X = A−1B
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since IX = X (multiplying the identity matrix times any matrix does

not change that matrix).

So although you haven’t really divided matrix B by matrix A, you’ve

used the matrix equivalent of multiplying by the reciprocal of a number

to achieve the same result as dividing.

The question is, does every matrix have an inverse (that is, another

matrix with which it multiplies to give the identity matrix), and if so,

how do you find it? The first part of this question is easy to answer:

any matrix that has a non-zero determinant (|A| 6= 0) has an inverse.

Matrices that have no inverse ((|A| = 0) are called “singular” matrices,

and matrices that have an inverse are called “non-singular” matrices.

But if a certain matrix has an inverse, how do you find that inverse?

There are several ways to go about this, but one approach is to use

the concepts of cofactors, transpose, and determinant described above.

Those concepts appear in the following equation for the inverse of matrix

A:

A−1 =
(Matrix of cofactors of A)T

|A|

in which the “Matrix of cofactors of A” is a matrix in which each element

of A is replaced by that element’s cofactor.

Here’s how that works for a 3x3 matrix. If matrix A is the usual

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


then the matrix of cofactors (MoC) for A is

MoC (A) =

 a22a33 − a32a23 −(a21a33 − a31a23) a21a32 − a31a22
−(a12a33 − a32a13) a11a33 − a31a13 −(a11a32 − a31a12)

a12a23 − a22a13 −(a11a23 − a21a13) a11a22 − a21a12

 .
The equation for the inverse of A shown above requires that you take

the transpose of this matrix, which is

[MoC (A)]T =

 a22a33 − a32a23 −(a12a33 − a32a13) a12a23 − a22a13
−(a21a33 − a31a23) a11a33 − a31a13 −(a11a23 − a21a13)

a21a32 − a31a22 −(a11a32 − a31a12) a11a22 − a21a12

 .
Dividing this matrix by the determinant of A provides the inverse of A.

Fortunately, the inverse of non-singular matrices is easily found using

most scientific calculators or computers, usually by defining a matrix A

and then raising A to the power of minus one.
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For a diagonal matrix, the inverse is simply another diagonal matrix

in which each diagonal element is the reciprocal of the corresponding

element in the original matrix. So a11 0 0

0 a22 0

0 0 a33

−1 =

 1
a11

0 0

0 1
a22

0

0 0 1
a33

 .

F) Simultaneous linear equations and Cramer’s Rule

The relationship between matrices and simultaneous linear equations

can be understood by considering equations such as

2x+ 5y − z = 12

−3x− 3y + z = −1

x+ y = 1.

Using the rules of matrix multiplication, this system of equations can be

written as a single matrix equation: 2 5 −1

−3 −3 1

1 1 0

×
 x

y

z

 =

 12

−1

1

 .
In general, three linear equations in three unknowns (x1, x2, x3) can be

written as

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

or  a11 a12 a13
a21 a22 a23
a31 a32 a33

×
 x1
x2
x3

 =

 b1
b2
b3

 .
If you define the matrices

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


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and

x =

 x1
x2
x3


and

b =

 b1
b2
b3


then the system of equations can be written as a single matrix equation:

Ax = b

which can sometimes be solved using the inverse of matrix A:

x = A−1b.

The reason that the word “sometimes” appears in the previous sentence

is that there are several conditions which will prevent this approach from

succeeding. For example, the system of equations may be inconsistent -

that is, there may be no set of values for x1, x2, x3 that satisfy all three

equations. In that case, you will not be able to find the inverse of A

because it will be a singular matrix. And if matrix b equals zero, you

have a system of homogeneous linear equations, which means there will

be only the trivial solution (x1 = x2 = x3 = 0) if A is non-singular or

an infinite number of solutions if A is singular.

In cases for which A is non-singular and b does not equal zero, you

can find the values of x1, x2, and x3 by finding the inverse of matrix

A and multiplying that inverse by matrix b, or you can use Cramer’s

Rule. In that approach, the first unknown (x1 in this case) is found by

replacing the values in the first column of the coefficient matrix (A) with

the elements of matrix b and dividing the determinant of that matrix by

the determinant of A. Here’s how that looks:

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

Likewise, to find the second unknown (x2 in this case), replace the values
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in the second column of A with the elements of b:

x2 =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
and to find x3 use

x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

Thus for the equations given at the start of this section,

A =

 2 5 −1

−3 −3 1

1 1 0



x =

 x1
x2
x3

 =

 x

y

z


and

b =

 b1
b2
b3

 =

 12

−1

1

 .
Hence

x = x1 =

∣∣∣∣∣∣
12 5 −1

−1 −3 1

1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
2 5 −1

−3 −3 1

1 1 0

∣∣∣∣∣∣
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so

x =
12[(−3)(0)− (1)(1)] + 5(−1)[(−1)(0)− (1)(1)]− 1[(−1)(1)− (1)(−3)]

2[(−3)(0)− (1)(1)] + 5(−1)[(−3)(0)− (1)(1)]− 1[(−3)(1)− (1)(−3)]

=
−12 + 5− 2

−2 + 5− 0
= −3.

Proceeding in the same way for y and z gives

y = x2 =

∣∣∣∣∣∣
2 12 −1

−3 −1 1

1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
2 5 −1

−3 −3 1

1 1 0

∣∣∣∣∣∣
so

y =
−2 + 12 + 2

−2 + 5− 0
= 4

and

z = x3 =

∣∣∣∣∣∣
2 5 12

−3 −3 −1

1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
2 5 −1

−3 −3 1

1 1 0

∣∣∣∣∣∣
so

z =
−4 + 10 + 0

−2 + 5− 0
= 2.

G) Matrix diagonalization using eigenvectors and eigenvalues

In the matrix equation discussed in the previous section

Ax = b

the matrix A operates on matrix x to produce matrix b. If x and b

are vectors, this equation represents the transformation by matrix A

of vector x into vector b. In some cases, the operation of A on the

components of x produces the components of a vector b that is a scaled

(but not rotated) version of x. In such cases, the equation becomes

Ax = λx
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where λ represents a scalar multiplier (and scalar multipliers can change

the length but not the direction of a vector).

Any vector x which satisfy this equation for a matrix A is called an

“eigenvector” of matrix A, and the scalar λ is called the “eigenvalue”

associated with that eigenvector.

The eigenvalues of a matrix can be very useful in finding a diagonal

version of that matrix, so you may wish to understand how to find the

eigenvalues of a given matrix. To do that, write the previous equation

as

Ax− λx = 0

which, since Ix = x, can be written as

Ax− λ(Ix) = 0

or

(A− λI)x = 0.

which means that either x = 0 (which is a the trivial case) or

|A− λI| = 0.

This equation is called the “characteristic equation” for matrix A, and

for a 3x3 matrix it looks like this:∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣− λ
∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣ = 0

or ∣∣∣∣∣∣
a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33 − λ

∣∣∣∣∣∣ = 0.

This expands to

(a11 − λ)[(a22 − λ)(a33 − λ)− a32a23]

+ a12(−1)[a21(a33 − λ)− a31a23]

+ a13[a21a32 − a31(a22 − λ)] = 0.

Finding the roots of this polynomial provides the eigenvalues (λ) for

matrix A, and substituting those values back into the matrix equation

Ax = λx allows you to find eigenvectors corresponding to each eigen-

value. The process of finding the roots is less daunting than it may
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appear, as you can see by considering the following example. For the

3x3 matrix A given by

A =

 4 −2 −2

−7 5 8

5 −1 −4


the characteristic equation is∣∣∣∣∣∣

4− λ −2 −2

−7 5− λ 8

5 −1 −4− λ

∣∣∣∣∣∣ = 0

or

(4− λ)[(5− λ)(−4− λ)− (−1)(8)]

− 2(−1)[(−7)(−4− λ)− (5)(8)]

− 2[(−7)(−1)− (5)(5− λ)] = 0.

Multiplying through and subtracting within the square brackets makes

this

(4− λ)(λ2 − λ− 12) + 2(7λ− 12)− 2(5λ− 18) = 0

or

−λ3 + 5λ2 + 12λ− 36 = 0.

Finding the roots of a polynomial like this is probably best left to a

computer, but if you’re lucky enough to have a polynomial with integer

roots, you know that each root must be a factor of the term not involving

λ (36 in this case). So (+/-) 2,3,4,6,9,12,and 18 are possibilities, and it

turns out that +2 works just fine:

−(2)3 + 5(22) + 12(2)− 36 = −8 + 20 + 24− 36 = 0.

So you know that one root of the characteristic equation (and hence one

eigenvalue) must be +2. That means you can divide a factor of (λ− 2)

out of the equation and try to see other roots in the remainder. That

division yields this:

−λ3 + 5λ2 + 12λ− 36

(λ− 2)
= −λ2 + 3λ+ 18.

The roots remaining polynomial on the right-hand side of this equation

are +6 and -3, so you now have

−λ3 + 5λ2 + 12λ− 36 = (λ− 2)(6− λ)(λ+ 3) = 0.
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So matrix A has three distinct eigenvalues with values +6, -3, and +2;

these are the factors by which matrix A scales its eigenvectors. You

could find the eigenvectors of A by plugging each of the eigenvalues

back into the characteristic equation for A, but as long as you can find

N distinct eigenvalues for an NxN matrix, you can be sure that A can

be diagonalized simply by constructing a new diagonal matrix with the

eigenvalues as the diagonal elements. So in this case, the diagonal matrix

(call it A′) associated with matrix A is

A′ =

 6 0 0

0 −3 0

0 0 2

 .
To see why this is true, consider the operation of matrix A on each of

its three eigenvectors (call them e, f , and g):

Ae = λ1e

Af = λ2f

Ag = λ3g

Now imagine a matrix E whose columns are made up of the eigenvectors

of matrix A:

E =

 e1 f1 g1
e2 f2 g2
e3 f3 g3


where the components of eigenvector e are (e1, e2, e3), the components

of eigenvector f are (f1, f2, f3), and the components of eigenvector g are

(g1, g2, g3). Multiplying matrix A (the original matrix) by E (the matrix

made up of the eigenvectors of A), you get

AE =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

×
 e1 f1 g1
e2 f2 g2
e3 f3 g3


which is

AE =

 a11e1 + a12e2 + a13e3 a11f1 + a12f2 + a13f3 a11g1 + a12g2 + a13g3
a21e1 + a22e2 + a23e3 a21f1 + a22f2 + a23f3 a21g1 + a22g2 + a23g3
a31e1 + a32e2 + a33e3 a31f1 + a32f2 + a33f3 a31g1 + a32g2 + a33g3


The columns of this AE matrix are the result of multiplying A by each

of the eigenvectors. But you know from the definition of eigenvectors
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and eigenvalues that

Ae = λ1e = λ1

 e1
e2
e3

 =

 λ1e1
λ1e2
λ1e3


and

Af = λ2f = λ2

 f1
f2
f3

 =

 λ2f1
λ2f2
λ2f3


and

Ag = λ3g = λ3

 g1
g2
g3

 =

 λ3g1
λ3g2
λ3g3

 .
This means that the product AE can be written

AE =

 λ1e1 λ2f1 λ3g1
λ1e2 λ2f2 λ3g2
λ1e3 λ2f3 λ3g3

 .
But the matrix on the right-hand side can also be written like this: λ1e1 λ2f1 λ3g1

λ1e2 λ2f2 λ3g2
λ1e3 λ2f3 λ3g3

 =

 e1 f1 g1
e2 f2 g2
e3 f3 g3

×
 λ1 0 0

0 λ2 0

0 0 λ3


This means that you can write

AE = E

 λ1 0 0

0 λ2 0

0 0 λ3


and multiplying both sides by the inverse of matrix E (E−1) gives

E−1AE = E−1E

 λ1 0 0

0 λ2 0

0 0 λ3

 =

 λ1 0 0

0 λ2 0

0 0 λ3

 .
If you tracked the discussion of the similarity transform in Section 6.1,

you’ll recognize the expression E−1AE as the similarity transform of ma-

trix A to a coordinate system with basis vectors that are the columns

of matrix E. Those columns are the eigenvectors of matrix A, and the

matrix that results from the similarity transform (call it A′) is diagonal

and has the eigenvalues of A as its diagonal elements.
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