
Chapter 6 Supplemental Material

1 Non-constant Potential Energies

You’ve seen that the basis function for the free particle (where the potential
energy is zero over all space) and for the “particle in a box” (in problem 6.10,
where the potential is zero from 0 to a and infinite every where else)1 is eikx,
or equivalently, sin(kx) and cos(kx). But what happens when the potential
energy is not constant?

In one fundamental sense, nothing is different–you’ve seen that the Schrödinger
equation can be derived from the energies of a sinusoidal wave, which means
that sinusoidal functions will always be solutions. When the potential energy
V is zero, the time-independent Schrödinger equation looks like

Eψ = − ~2

2m

∂2ψ

∂x2
. (1)

A single sinusoidal function ψ(x) = sin(kx) solves this differential equation:

E sin kx =
k2~2

2m
sin kx, (2)

when k =
√

2mE
~2 , because the second derivative of sin(kx) is −k2 sin(kx).

The functions cancel, and the equation becomes E = E.
Let’s see what happens when you introduce a non-zero potential, such

as V (x) = ax and use the same sinusoidal wavefunction. The Schrödinger
equation becomes

E sin kx =
k2~2

2m
sin kx+ ax sin(kx). (3)

1The following discussion assumes you’ve worked through that problem or the online
solutions, so if you haven’t yet, now is a good time to!
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While the sine functions still cancel out, you’re left with

E =
k2~2

2m
+ ax. (4)

The total energy E should be constant, but here it depends on the position
x.

Evidently, a single sine wave is not a good solution. Doesn’t this con-
tradict our earlier statement? No–some function is a good solution to this
equation, and you can always write any function as a linear combination of
sines (or cosines) using Fourier analysis. It’s the appropriate combination of
sines and cosines, or plane waves eikx, that will still solve this equation, not
one individual wave.

If you want a single wavefunction (what we call the basis function) to
solve the Schrödinger equation, that solution will depend on the form of the
potential energy.

2 Quantum Harmonic Oscillator

As an example of a non-constant potential, let’s look at the harmonic os-
cillator, an important system in quantum mechanics because it’s the sim-
plest model of chemical bonding. Both classically and in quantum me-
chanics, the harmonic oscillator is defined by a parabolic potential energy
V (x) = 1

2
mω2x2. The Schrödinger equation is

Eψ = − ~2

2m

∂2ψ

∂x2
+

1

2
mω2x2ψ (5)

You can find the derivation of solutions to the differential equation in
quantum mechanics textbooks, so we will investigate what those solutions
look like and compare to the constant potential energy case.

As with the particle in a box, the harmonic oscillator only allows for
certain, quantized solutions ψn(x). The functional form is more complex,

ψn(x) =
(mω
π~

)1/4 1√
2nn!

Hn(x′)e−
mωx2

2~ , (6)

where Hn(x′) are the Hermite polynomials (listed in Table 2) and x′ ≡√
mω
~ x.



Hermite Polynomials
H0(x

′) = 1
H1(x

′) = 2x′

H2(x
′) = −2 + 4x′2

H3(x
′) = −12x′ + 8x′3

Take a moment, before worrying about the exact forms of Hn(x′), to

consider what effect the Gaussian term e−
mωx2

2~ has on all harmonic oscillator
basis wavefunctions. When x goes to ±∞, the Gaussian term goes to zero.
This is very useful, because the potential energy V (x) = 1

2
mω2x2 becomes

infinite at x = ±∞; an infinite potential is a perfect barrier that does not
allow the wavefunction to exist. So, you can see that Eq. 6 behaves correctly
at the extreme limits.

Energies for the quantum harmonic oscillator are given by En = (n +
1/2)~ω; the lowest energy is ~ω/2, when n = 0. Plugging in H0(x

′) into Eq.
6 gives the lowest energy wavefunction

ψ0(x) =
(mω
π~

)1/4
e−

mωx2

2~ , (7)

Figure 1: The lowest two energy wavefunctions for the harmonic oscillator,
in units where m = ω = ~ = 1.

which is simply a Gaussian function, as shown (with ψ1(x)) in Fig. 1)



The next lowest energy, 3~ω/2, occurs for n = 1. In this case the wave-
function picks up a factor of x from H1(x

′):

ψ1(x) =
(mω
π~

)1/4 1√
2

(
2

√
mω

~
x

)
e−

mωx2

2~ (8)

Simplifying constants gives

ψ1(x) = Axe−αx
2/2, (9)

where A =
(
mω
π~

)3/4
2
√

2π and α = mω
~ . To demonstrate the earlier point,

what is the Fourier analysis of ψ1(x)? That is, what is the combination of
plane waves that solves the harmonic oscillator Schrödinger equation?

According to Eq. 3.34 or 6.36, the wavefunction ψ(x) is an integral of the
wavenumber function φ(k). Our first step, then, is to find φ(k):

φ(k) =
1√
2π

∫ ∞
−∞

ψ1(x)e−ikxdx

=
1√
2π

∫ ∞
−∞

Axe−αx
2/2−ikxdx

= −ikα−3/2e−k2/(2α),

where the integral can be evaluated with your favorite mathematical software.
The wavenumber function is actually similar to the spatial wavefunction

(it goes as ke−k
2
), but it’s picked up a factor of i. This i has implications

for the spatial wavefunction ψ(x), because you find ψ(x) by integrating φ(k)
multiplied by eikx. Think about expanding with the Euler equation: eikx =
cos(kx) + i sin(kx). We know that the original function is real, so the final
wavefunction, composed of plane waves must also be real. Multiplying by
i means the real part of φ(x) will be the sines instead of cosines. This is
consistent with the graph of ψ(x), which, like sine, is an odd function.

The wavefunction ψ1(x) can now be written as the Fourier transform of
the wavenumber function:

ψ1(x) =
1√
2π

∫ ∞
−∞

(
−ik
α3/2

)
e−k

2/(2α)eikxdk. (10)

Fig. 2 shows this integral, evaluated from k = -1 to 1, -2 to 2, and -10
to 10, compared to the actual function. Even though 10 is not infinity, the
last integral is indistinguishable from the original wavefunction; this happens
because φ(k) is relatively well-condensed around 0 and bigger values of k do
not contribute much.



Figure 2: The wavefunction for the second lowest energy level in the harmonic
oscillator and its representation as the integral of the wavenumber function.
The wavenumber function is integrated over the bounds ±1, ±2, and ±10.
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