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Introduction 

The process of convolution is introduced in Section 3.8 in Chapter 3 of A Student's Guide to 

Laplace Transforms because of the Laplace-transform property relating convolution of two 

functions in the time domain to multiplication of the Laplace transforms of those two functions in 

the generalized-frequency (s) domain.  That's quite useful, but the process of convolution is also 

important in a wide range of applications in engineering, physics, and applied mathematics.  

Those applications include signal processing, probability theory, image processing, differential 

equations, and many others. 

 

If you're encountered convolution before, in may have been in the context of designing and 

analyzing linear time-invariant (LTI) systems.  That's because the output of any LTI system is the 

convolution of the input signal and the impulse response of the system (that is, the response of the 

system to an input consisting of a single impulse – a time-domain delta function).  So 

understanding the process of convolution is especially important for such systems. 

 

The notation for convolution used in some texts (including of A Student's Guide to Laplace 

Transforms) looks a bit unusual at first:  the convolution of two time-domain functions 𝑓(𝑡) and 

g(𝑡) is written as (𝑓 ∗ g)(𝑡).  In this expression, the asterisk signifies convolution, so the 

expression in the first set of parentheses could be written as 𝑓(𝑡)  ⁎ g(𝑡)), but the result of the 

convolution process is also a function of time, and that's the meaning of the (t) portion of the 

expression (𝑓 ∗ g)(𝑡).  Hence the convolution could be written as [𝑓(𝑡)  ⁎ g(𝑡)](t), for which 

 (𝑓 ∗ g)(𝑡)  is a convenient shorthand.   

 

Several useful properties of the convolution process can be conveniently written using this 

notation.  Three of those properties are that the convolution process is 

 

1) Commutative, so (𝑓 ∗ g)(𝑡)  = (g ∗ 𝑓)(𝑡) 

2) Associative, so [𝑓 ∗ (g ∗ ℎ)(𝑡)] = [(𝑓 ∗ g) ∗ ℎ)](𝑡), and 

3) Distributive, so (𝑓 ∗ g)(𝑡)  +(𝑓 ∗ ℎ)(𝑡) = [𝑓 ∗ (g + ℎ)](𝑡).   

 

Another useful property is that the convolution of any function with the Dirac delta function 

simply returns the original function, so (𝑓 ∗ 𝛿)(𝑡) = 𝑓(𝑡).   

 

The reasons that the convolution process has these properties can be understood by considering 

the mathematical equation that describes convolution.  That's the subject of the next section of 

this document. 

 

Section 2: Mathematical statements of convolution process 

 

In Chapter 3 of the text, the mathematical statement of the convolution process for two time-

domain functions is given as 

 

(𝑓 ∗ g)(𝑡) = ∫ 𝑓(𝜏)g(𝑡 − 𝜏)𝑑𝜏
𝑡

0
   (Eq. 3.24 in text) 

 

in which both f(t) and g(t) are causal functions, so both have zero value for t<0. 
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As explained in the text, the lower limit of the integration over the time variable τ in Eq. 3.24 is 

determined by the fact that the causal function f(τ) is zero for τ<0 and the causal function g(t-τ) is 

zero for τ>t (since its argument is negative in that case). 

 

For general (not necessarily causal) functions f(t) and g(t), the equation for the convolution 

process is 

 

(𝑓 ∗ g)(𝑡) = ∫ 𝑓(𝜏)g(𝑡 − 𝜏)𝑑𝜏
∞

−∞
.  (1) 

 

in which the integration over τ extends over all time, from negative infinity to positive infinity. 

 

As described in the text, the integral in Eq. 1 can be understood as the following series of steps: 

 

1) Both f(t) and g(t) are written as functions of the dummy1 time variable τ 

2) One of the two functions, g(τ) in this case, is reversed in time, making g(-τ) 

3) The function g(τ) is then offset in time by amount t, making g(t-τ) 

4) The function g(t-τ) is multiplied by the other function (which is f(τ) in this case) 

5) The multiplication products are added up (that's the integral over τ) 

6) As time passes and t incrementally increases, the function g(t-τ) ``slides past" the function f(τ). 

7) At each time t, the point-by-point multiplication of g(t-τ) and f(τ) is repeated 

8) The results of the multiplication are accumulated for each value of t. 

 

These steps are easy to visualize, especially with the help of the graphical analysis shown in the 

next two sections of this document.  Most students understand the convolution process as a 

mathematical procedure in which one of the functions is used to modify the other (since the 

functions are multiplied together at each value of time), but it's quite common for students to ask 

the question "What good does it do to reverse one of the functions before offsetting it and 

multiplying by the other function?" 

 

One answer to that question is that it's perfectly possible to perform a similar operation in which 

neither function is reversed; this process is called the "cross-correlation" of the two functions, and 

cross-correlation is useful in providing a mathematical measure of the similarity of two functions.  

But by reversing one of the functions, the convolution process takes on several characteristics that 

make it useful in a variety of applications.  The commutative property mentioned above is one of 

those characteristics, because reversing one of the functions ensures that (𝑓 ∗ g)(𝑡)  = (𝑔 ∗ f)(𝑡).  

You can verify that by writing 

 

(g ∗ 𝑓)(𝑡) = ∫ g(𝜏)𝑓(𝑡 − 𝜏)𝑑𝜏
𝜏=∞

𝜏=−∞

 

 

and making the change of variables τ'=t-τ (so τ=t-τ' and dτ=-dτ') gives 

 

(g ∗ 𝑓)(𝑡) = ∫ g(𝑡 − 𝜏′)𝑓(𝜏′)(−𝑑𝜏′) =
𝑡−𝜏′=∞

𝑡−𝜏′=−∞ ∫ 𝑓(𝜏′)g(𝑡 − 𝜏′)𝑑𝜏′ = (𝑓 ∗ g)(𝑡)
𝜏′=∞

𝜏′=−∞
. 

 
1 The variable τ is a "dummy" variable because it is used only during the process of integration and plays no role in 

the result (it disappears when the limits of integration are inserted, so it is said to be "integrated out" in the process).  

This means that this variable could be given any name and the integration result would be the same. 
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Another benefit of reversing either function prior to shifting and multiplication can be understood 

by considering an application in which a signal (represented in the time domain by one of the 

functions) is applied to a system (with time-domain characteristics represented by the other 

function).  If you wish to determine the response of the system to that signal, it's necessary to 

analyze how the signal and the system interact as the signal arrives at and then moves through the 

system. 

 

To visualize the interaction between a signal and a system, it may help to imagine the "signal" as 

the time-varying voltage output of a microphone and the "system" as a filtering circuit into which 

the signal is injected.  Alternatively, you can picture the signal as a radar pulse that propagates 

across and scatters from an extended target (the system) as time passes.   

 

If the function g(t) represents the signal (the output of the microphone or the shape of the radar 

pulse) and the function f(t) represents the system (the impulse response of the filter or the 

scattering profile of the target), the interaction as the signal arrives at, moves through, and departs 

from the system can be modelled by the multiplication of two functions as one "slides past" the 

other.  The result of the interaction as a function of time is given by the convolution of the system 

function f(t) and the signal function g(t). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Time-domain functions representing a system f(t) and a signal g(t). 

  

Now think about how you might plot a signal (the microphone output or the radar pulse) on a 

graph in which the (horizontal) time axis is increasing to the right, as in Figure 1.  In that case, the 

earliest portion of the signal is leftmost on the plot (since it occurs at smaller values of time), and 

the later portions of the signal appear to the right on the plot (at larger values of time).  So it's the 

leftmost portion of the plotted time-domain signal (the beginning of the upward ramp in this case) 

that begins interacting with the system before the later (rightward) portions of the signal have 

arrived.  
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Figure 2: Representation of the signal g(t-τ) moving through the system f(τ) as t increases. 

 

The interaction between the signal g(t-τ) and the system f(τ) is depicted in Figure 2.  At the instant 

shown in the figure, the leading edge of the signal has just arrived at the system, so the interaction 

is about to begin.  As time passes (that is, as the value of t increases), the function g(t-τ) will 

move to the right as the signal moves through the system. 

 

Notice that by reversing the signal function, the earliest portion of the signal (the beginning of the 

upward ramp in this case) arrives first at the system, with later portions of the signal (the higher 

portions of the ramp and the step back from one to zero in this case) following at later times.  But 

if you hadn't reversed the function representing signal, the later (rightmost) portion of the signal 

would have been the first to interact with the system.  Remember, due to the commutativity of the 

convolution process, you can reverse either of the two functions and the result will be the same. 

 

So reversing one of the functions provides the dual benefits of commutativity and correct time-

domain sequencing when convolution is used for applications such as this.  But if you're 

uncertain as to why the expression g(t-τ) in the convolution integral accomplishes the required 

flipping and time-offset of the function g(t), you may find the next section helpful.  

 

 

Section 3: Flipping and shifting functions 

 

To understand the effect of the minus sign in the function g(-τ) and the constant c in g(-τ±c), start 

by considering the exponential time-domain function g(τ)=e-τu(τ) shown in Figure 3.  Note the 

small table on the right of the graph, showing several values of the independent variable and the 

function g with that variable as its argument (as in the text, τ=0+ is an instant just after τ=0).   

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Time-domain function g(τ)=e-τu(τ). 
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The variable is called τ in this plot and table, but neither the shape of the plot nor the entries in the 

table depend on the label of that variable.  In other words, an identical plot and table would result 

had we plotted g(t) vs. t, g(α) vs. α, or g(a+1) vs. a+1.  But as shown in the remainder of this 

section, the graph can change significantly if you plot g(-t) vs. t (rather than vs. -t) or g(a+1) vs. α 

(rather than vs. a+1). 

 

You can see an example of that in Figure 4.  Look first at the two left columns in the table, 

labelled τ+1 and g(τ+1).  Note that the entries in these two columns are identical to the entries in 

the table in Figure 3, because as long as the entries in the left column are used as the argument of 

the function g, that function takes on the values shown in the center column. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Offset time-domain function g(τ+1)= e-(τ+1)u(τ+1). 

 

Now look at the rightmost column of the table in Figure 4, which shows the values of τ 

corresponding to the values of τ+1 in the leftmost column.  If you plot g(τ+1) vs. τ (rather than 

τ+1), you get the plot shown on the right side of Figure 4.  As that plot shows, the function g(τ+1) 

is shifted one unit to the left (toward negative τ) when plotted vs. τ.  Had we used the argument 

τ-1 in this plot, the function g(τ-1) would have been shifted not to the left but to the right (toward 

positive τ) when plotted vs. τ. 

 

So adding a positive constant to the argument of the function g(τ) shifts the plot of the function to 

the left, and subtracting a constant shifts the function plot to the right.  But if the independent 

variable (τ in this case) has a minus sign in front of it, two changes occur: the function is reversed 

(flipped about the vertical axis), and any shift goes in the opposite direction.  

 

To see why that's true, start by looking at the table on the left side of Figure 5.  Once again, the 

two left columns have identical entries to the previous tables, but in this case, those columns are 

labelled -τ and g(-τ).  The rightmost column shows the values of τ corresponding to the values of 

-τ in the leftmost column, and if you plot g(-τ) vs. τ (rather than -τ), you get the plot shown on the 

right side of Figure 5.  As that plot shows, the function g(-τ) is flipped about the vertical axis 

when plotted vs. τ. 
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Figure 5: Reversed time-domain function g(-τ)=e-(-τ)u(τ). 

 

 

The final figure of this section (Figure 6) shows the effect of adding a positive constant to the 

argument of the reversed function g(-τ).  Note that the entries in the two left columns are identical 

to the entries in Figures 3, 4, and 5, although in this case they represent -τ+1 and g(-τ+1). The 

rightmost column shows the values of τ corresponding to the values of -τ+1 in the leftmost 

column. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Reversed and offset time-domain function g(-τ+1)= e-(-τ+1)u(-τ+1). 

 

 

Plotting the values of g(-τ+1) from the center column vs. the values of τ from the rightmost 

column gives the graph on the right side of Figure 6.  Comparing this to the graph in Figure 5 

shows that the effect of adding a positive constant in this case is to shift the graph of the reversed 

function g(-τ) vs. τ to the right (toward positive τ).  As mentioned above, that's opposite to the 

direction of the shift of the (unreversed) function g(τ) vs. τ when a positive constant is added to 

the argument. 

 

This explains why the expression g(t-τ) appears in the convolution integral in Equation 1: it 

produces the reversal and time-shift of the function g(τ) needed for the convolution process.  The 

limits of that integral are -∞ to +∞, but when you perform that integration, particularly in the 

case in which the functions being convolved are of finite duration, it's necessary to break the 

integral into subranges of τ, and setting the limits of integration for each subrange takes a bit of 

thought.  That's the subject of the final section of this document.  
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Section 4: Graphical explanation of convolution process 

 

As described above, the convolution of two finite-duration time-domain functions such as f(τ) and 

g(τ) shown in Figure 7 is performed by reversing one of the functions (chosen to be g(τ) in this 

example) and multiplying that reversed function by the other function (f(τ) in this case) as g(t-τ) 

"slides past" f(τ) over time.  During that process, the overlap between the two functions changes 

as g(t-τ) moves into and then moves out of the region in which f(τ) is non-zero, and that means 

that the convolution integral can be done over subranges of τ.  For each of those subranges, the 

limits of integration depend on the positions of the left and right edges of f(τ) and g(t-τ). 

 

 

 

 

 

 

 

 

 

 

              (a)               (b) 

 

Figure 7: Finite-duration time-domain functions f(τ) and g(τ).  

 

To see an example of how that works, look at the edges of the function f(τ) shown in Figure 7a.  

The function f(τ) is independent of t and does not move along as time t increases, so the left edge 

of the function f(τ) is always at τ=3 and the right edge of f(τ) is always at τ=4.   

 

Now look at the edges of the function g(τ) shown in Figure 7b.  Before this function is reversed 

and offset, this function extends from τ=0 to τ=2.  But when g(τ) is reversed (but not offset), it 

extends from τ=-2 to τ=0, as shown in Figure 8a.  So at time t=0, the left edge of g(-τ) is at τ=-2 

and the right edge is at τ=0.  But since the function g(t-τ) moves (rightward) along the τ axis as t 

increases, the left and right edges both change position over time.   

 

 

 

 

 

 

 

 

 

 

 

              (a)               (b) 

 

Figure 8: Position of left and right edges of time-domain functions g(-τ) and g(-τ+1).  
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One example of that is shown in Figure 8b, in which you can see that at time t=+1, the left edge 

of g(t-τ) is positioned at τ=-1 and the right edge at τ=+1.  So for this function, at any time t the left 

edge is at τ=t-2 and the right edge is at τ=t. 

 

Since it's the region of overlap between function f(τ) and function g(t-τ) that contributes to the 

convolution integral, it's important to determine the extent of that overlap as well as the time 

range over which the overlap occurs.  You can do that with the help of a series of plots such as 

those shown in Figure 9.  In this figure, the position of the reversed and offset function g(t-τ) 

relative to the function f(τ) is shown at various times.  Those times have been selected to show 

g(t-τ) approaching, entering, covering, and leaving the time range during which f(τ) is non-zero. 

 

 

 

 (a)             (f) 

 

 

 

(b)             (g) 

 

 

 

(c)             (h) 

 

 

 

(d)             (i) 

 

 

 

(e)             (j) 

 

 

 

Figure 9: Overlap of f(τ) and g(t-τ) as time increases from t=2 to t=6. 

 

The left column of Figure 9 shows the position of g(t-τ) at times t = 0, 2, 3, 3.5, and 4, and the 

right column shows position of g(t-τ) at times t = 4.5, 5, 5.5, and 6.  At each position for which 

some overlap between f(τ) and of g(t-τ) occurs, the lower limit of integration is set by the left 

edge of either f(τ) or g(t-τ) (whichever is at larger τ) and the upper limit of integration is set by the 

right edge of either f(τ) or g(t-τ) (whichever is at smaller τ).   

 

For t<3 (as in Figure 9 b and c), the function g(t-τ) lies entirely to the left of the function f(τ), and 

there is no overlap between the functions. 

 

For 3<t<4 (Figure 9 d and e), g(t-τ) is entering the time range in which f(τ) is non-zero.  The left 

edge of the overlap region is set by the left edge of f(τ) at τ=3, and the right edge of the overlap 

region is set by the right edge of g(t-τ), which is at τ=t.  Thus the integration limits are τ=3 to τ=t. 
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For 4<t<5 (as in Figure 9 g and h), the function g(t-τ) begins before and ends after the time range 

in which f(τ) is non-zero, so the region of overlap begins at the left edge of f(τ) at τ=3 and ends at 

the right edge of f(τ) at τ=4.  In this case, the limits of integration are τ=3 to τ=4. 

 

For 5<t<6 (as in Figure 9 i and j), the left edge of the function g(t-τ) has moved past the left edge 

of f(τ), so the overlap region begins at the left edge of g(t-τ) at τ=t-2.  The right edge of g(t-τ) is 

past the right edge of f(τ), so the overlap region ends at the right edge of f(τ) at τ=4.  Hence the 

limits of integration for this region are τ=t-2 to τ=4.  

 

For t>6, the left edge of the function g(t-τ) has moved past the right edge of f(τ), so there is no 

region of overlap. 

 

With these time ranges and integrations for the regions of overlap in hand, the convolution can be 

determined for each subrange of τ: 

 

 (𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞
 = 

 

 ∫ (0)(𝑡 − 𝜏)
3

−∞
𝑑𝜏 =  0        t < 3 

    ∫   (1)(𝑡 − 𝜏)𝑑𝜏
𝑡

3
 = 𝑡(𝑡 − 3) −

1

2
(𝑡2 − 32) =

𝑡2

2
 − 3𝑡 +

9

2
=

1

2
(𝑡 − 3)2  3 < t < 4                 

 ∫   (1)(𝑡 − 𝜏)𝑑𝜏
4

3
 = 𝑡(4 − 3) −

1

2
(42 − 32) = 𝑡 −  

7

2
    4 < t < 5 

   ∫ (1)(𝑡 − 𝜏)𝑑𝜏
4

𝑡−2
=𝑡[4 − (𝑡 − 2)]  −

42−(𝑡−2)2

2
] = −

𝑡2

2
 + 4𝑡 –  6 = −

(𝑡−6)(𝑡−2)

2
 5 < t < 6 

  ∫  (0)
∞

6
(𝑡 − 𝜏)𝑑𝜏 = 0        t > 6. 

 

 

Here's a plot of the convolution as a function of time: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Result of convolution 𝑓(𝑡)  ⁎ g(𝑡). 
 

 

For additional discussion and examples of convolution in the context of the Fourier transform, 

you may find The Fast Fourier Transform and Its Applications by E.O. Brigham (Pearson, 1988, 

ISBN 978-0133075052) helpful. 


